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Abstract

We provide evidence of the role of local agricultural crop diversity, measured by
the number of crops grown locally and the homogeneity of their land allocation, in
hampering the diffusion of pests. First, we build consistent county-level diversity
measures using a new machine-learning-based method to link the US Census of Agri-
culture between 1880-2007. Second, we show large declines in local crop diversity
over the second half of the 20th century, consistent with previous findings. Finally,
we examine the impact of crop diversity on the spread of two significant pest out-
breaks in US agricultural systems—the boll weevil (1890-1930) and the imported
fire ant (1940-1997). We address reverse causality concerns by instrumenting local
crop diversity with the pre-planting expected standard deviation in crop revenues.
To the best of our knowledge, this constitutes the first causal inference study of
the role of crop diversity on pest diffusion. We find that lower local crop diversity
favored the diffusion of these two pests.

∗This paper benefited from feedback at various stages from Pierre Bodéré, Michael Crossley, Eyal Frank, Joséphine

Gantois, Nicolas Longuet-Marx, Anouch Missirian, Suresh Naidu, Wolfram Schlenker, and Paul Rhode. We are grateful for

comments from numerous participants in seminars and conferences at Columbia University, the LSE Shifting Landscape

Conference and AERE OSWEET. We are particularly indebted to Christopher Muller for sharing data and to Frederik

Noack for his generous feedback at a critical point of our project. All remaining errors are ours.
†Du Puy: School of International and Public Affairs, Columbia University (td2631@columbia.edu); School of Interna-

tional and Public Affairs, Columbia University (m.obolensky@columbia.edu). Both authors contributed equally to this

work. Both designed the research, performed the research, contributed analytic tools, analyzed the data and wrote the

paper. The authors declare no competing interest.

1



1 Introduction

Transformations in agricultural production processes have been a major driver of land use
changes. Increased reliance on irrigation, pesticides, and fertilizers impact local climate
[1], the sustainability of water resources [2], and lead to significant air, soil, and water
pollution [3] [4]. These shifts in land management have also affected the structure and
layout of rural landscapes.

We study the consequences of the homogenization of cropland on the spatial diffusion
of agricultural pests in the US over the twentieth century. Pest shocks are extremely
harmful to the stability of ecosystems and can lead to significant agricultural losses [5] [6]
[7]. Pesticides are efficient at curbing pest-related risks, but pests develop product-specific
resistance over time [8], and exposure to pesticides causes significant harm to human and
non-human health [9] [10] [11] [12] [13] [14]. Understanding the determinants of pest
diffusion is therefore important to finding alternatives to pesticide use and improving the
resilience of agricultural systems.

Our analysis spans two major pest shocks of the twentieth century in the U.S. The U.S.
provides an ideal setting for studying the role that crop diversity plays in pest diffusion
for several reasons. First, the United States government has consistently recorded highly
detailed agricultural data starting in the late nineteenth century. We construct two
measures of crop diversity at the county level over time: the number of crops grown locally
(crop richness) and the homogeneity of land allocation across the crops grown (Gini-
Simpson index or crop evenness).1 Second, the land management practices of American
farmers have transformed during the twentieth century. As a result, the average farm
size increased from 150 acres in 1920 to 446 acres in 2022 and croplands have become
more spatially homogeneous [18] [19] [20]. Third, meticulous records of pest diffusion
were created throughout the twentieth century. The diffusion of the boll weevil between
1890 and 1930 was monitored annually [21]. A few years later, in 1940, the imported fire
ant started proliferating in the Southeast, and the county-level quarantine records allow
us to track its diffusion [22].

We show that higher crop diversity hampers the local diffusion of the boll weevil and the
imported fire ants using an instrumental variable approach. To the best of our knowl-
edge, this constitutes the first causal inference study for this mechanism. This instru-
mental variable strategy could be used to study further consequences of local cropland
homogeneization. Results from our preferred specification indicate that increasing the
crop richness (resp. evenness) of a county such that it moves from the 25th to the 75th

percentile of the crop richness distribution would reduce the yearly likelihood of contam-
1Using multiple diversity indices is in line with the recommendation of the literature on the local biodiversity [15] [16]

[17].
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ination by the imported fire ant by 64% (resp. 22%)2. In the case of the boll weevil, a
county moving from the 25th to the 75th percentile of the evenness distribution would see
its likelihood of contamination in a given year decreased by 71%. We do not find any
effect of crop richness on the boll weevil diffusion, in part due to a lack of identifying
power. The mechanisms through which crop diversity acts on pest diffusion most likely
differ between the two considered pests, explaining in part the difference in effect size
between pest events.3 The boll weevil feeds mainly on cotton and is thus negatively im-
pacted by the fragmentation of cotton fields [23]. By contrast, the omnivorous imported
fire ant is less likely to depend on the spatial contiguity of specific crops. Factors hamper-
ing its progress relate to competition for niches in a given ecosystem [24]. County-level
crop richness and evenness positively correlate with both land fragmentation and the
competitiveness of ecological niches, explaining why we find they slow down the diffusion
of pests locally in most of our specifications.4

There are many threats to identification in this context, which may persist even after
accounting for systematic differences between counties and years. For example, areas of
intense agriculture are both more likely to have homogeneous cropland and rely heav-
ily on pesticides. This may downward bias the correlation between crop diversity and
pest invasion. We address these concerns by instrumenting local crop diversity with the
standard deviation in pre-planting expected agricultural revenues across crops. Profit-
maximizing farmers optimize their crop mix and, everything-else-equal, grow fewer crops
when the distribution of expected revenues across crops grows wider. The spread of ex-
pected revenues is therefore correlated with local crop diversity, making the instrument
valid. Additionally, after controlling for county and decade fixed effects, variation in the
instrument is due to national shocks in crop demand and is exogenous from local drivers
of pest diffusion.

When examining the relationship between crop diversity and pest diffusion, a key concern
is that pests may travel with commodity trade. The boll weevil appeared in the southeast
of the United States at a time when the rail was being developed. However, previous
research has established that the diffusion of the boll weevil was not significantly impacted
by local trade networks, but rather by wind patterns [5]. On the contrary, the diffusion
of the imported fire ant is known to have been facilitated by commodity trade, especially
to California [6]. Our results are robust to dropping the state from the sample as well
as controlling for the evolution of the United States interstate highway network over our
period of analysis.

2The spread in richness over counties is larger – 4 crops difference between the 25th and 75th centiles, than for the
Gini-Simpon index, with resp. 0.31 and .58.

3A formal comparison of the effect size across pest events is difficult due to differences in sample composition.
4We explain the lack of responsiveness of the boll weevil to the richness index by the lack of variation in crop mix in

the early twentieth century United States South – and thus the lack of statistical power.
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Biodiversity estimates are heavily influenced by sampling variation. This implies that
cross-space and time comparisons require consistency in sampling methods, ideally at a
local scale. In the absence of fine-grained data on landscape complexity and biodiversity
over our period of study, the Census of Agriculture is a remarkable source of county-level
data given its completeness and relative homogeneity over time. To further improve the
comparison across census waves, we develop a new method to link the different census
waves over time. For each county shape for which census data was ever collected, we
predict the within-county location of cropland areas at the data collection moment. We
do so using flexible functions of historical climate and topography. We use this spatial
distribution of agricultural activity to construct aggregation weights and reallocate the
data collected in various waves to a stable map of US counties. This allows for the com-
parison of county-level observables across time. Our method relaxes the usual assumption
that agricultural areas are homogeneously distributed within a county. We show evidence
that our algorithm outperforms traditional area-based linking algorithms [25].

This paper contributes to a growing literature documenting the consequences of biodi-
versity loss. The decline in species richness in managed agricultural environments has
been shown to allow fungal pathogens to occupy additional ecological niches and reduce
dilution effects [26], as well as to increase the use of pesticides [27]. In line with our
results, recent research shows that larger agricultural areas and larger agricultural fields
are associated with more intense pesticide use [28] [29]. Noncrop habitat has however
been shown to have no systematic relation with pest suppression [30]. Our paper also
relates to the epidemiology literature that has established that more diverse ecological
communities are more immune to diseases [31][32][33]. To the best of our knowledge,
this paper is the first to use causal inference methods to show how high crop diversity
can slow down the spread of pests. Second, we contribute to the literature analyzing the
consequences of economic activity on biodiversity. Recent examples include the study of
the drivers of the collapse of vulture populations in India [34], and the bison population in
the Great Plains of the United States [35]. Liang et al [36] also show how local economic
shocks in production negatively impact species abundance, diversity, and stability by in-
creasing air pollution. We build on these findings to construct an instrumental variable
for local crop diversity. Finally, we make a methodological contribution by developing
a new data-driven approach to link the 1840-2007 United States Census of Agriculture
over time, accounting for the changing county boundaries for which the Census data was
collected. Our new dataset replicates the declining trends previously established by the
literature [20].
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2 Methodology

2.1 Measuring Pests Diffusion

Boll Weevil The boll weevil is an insect native to Mexico and Central America. It
entered the United States in 1892 through Brownsville, Texas, and later expanded to the
entire cotton belt [5]. The lack of natural enemies and effective pesticides against the
boll weevil in the United States until 1918 favored its expansion in cotton fields where it
caused significant damages.5

We get boll weevil contamination data from historical maps [21]. Panel (a) of Figure 1
displays the year of arrival of the boll weevil in each county of the United States South.
The diffusion follows a concentric pattern, consistent with the evidence of the spread of
the boll weevil following dominant winds [5].

Imported Fire Ants The two species of imported fire ants we study arrived in the
United States around the late 1930s. They have since spread through the United States
South, and more recently to some areas in California (Panel (b) Figure 1). The ants
originate from South America and know few natural enemies in the United States [6].
The fire ants are omnivorous and can significantly affect local ecosystems by displacing
other species of ants and invertebrates through competition for resources, as well as
inflicting damage to reptiles, mammals, and ground-nesting birds.6

Starting in 1940, the United States Department of Agriculture (USDA) published county-
level quarantine decisions to help prevent the spread of the imported fire ant [22]. Our
data is such that we know the date of the introduction for each county-level quarantine.
All the quarantines introduced are still active today. We assume that the date of intro-
duction of the quarantine is a reasonable proxy for the arrival of the ants and that once
contaminated the counties remain contaminated.

In the 2000’s the USDA started a campaign of information among truck drivers to limit
the accidental spread of the ants. Simultaneously, pesticides were developed to curb the
invasion. Because these adaptive measures cannot be fully accounted for in our models,
we focus on the pre-2000 period and show that results hold when accounting for changes
in transportation networks.

5It is estimated that after five years of contact, a contaminated county’s production would have declined by 50%.
Impacted counties experienced significant out-migration, and by transforming the prevalence of tenant farming, the boll
weevil even reduced the rates of marriage among young African Americans in the South [21].

6The ants are also harmful to agricultural workers, working in crops that are manually harvested like vineyards, orchards,
and vegetable field crops. Their poison causes a burning sensation, and in a few cases can cause life-threatening anaphylactic
shocks. Additionally, the ants can cause extensive damage to irrigation lines, electrical equipment, and harvesting and
mowing equipment by creating large mounded nests in the middle of fields. The state of California estimated that a
state-wide spread of the ants could generate yearly damages ranging from $387 to $989 million.
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Figure 1: Pests Contamination Over Time

(a) Boll Weevil (b) Imported Fire Ant

Notes: Data comes from the digitized map of the spread of the boll weevil, from Bloom et al (2017) [21], and the USDA
Aphis website [22] for the imported fire ant.

2.2 Measuring Crop Diversity

Biodiversity is a complex concept. It can be measured at various scales in a given ecosys-
tem and can be defined in different ways.7 In this paper, we focus on local crop diversity.
While other variables related to biodiversity are important to explain the spread of pests,
we focus on crop diversity at the county level for several reasons. First, crop diversity can
be consistently measured throughout the twentieth century in the United States. Second,
aggregated measures of crop diversity are correlated with more granular variables also
related to biodiversity [38] [39]. Third, crop diversity is directly influenced by agricul-
tural practices that respond to changes in the economic environment across space and
over time [40] [41].8 This measure allows us to test by proxy the links between landscape
configurations related to human activity and pest diffusion.

We construct two county-level measures of crop diversity between 1880 and 2012 using
the Census of Agriculture [42]. The richness index counts the number of distinct crops
grown in a county. The Gini-Simpson index or crop evenness is the probability that two
acres sampled at random within a county are covered with different crops. This second
index ranges from 0 (two random acres are systematically covered with the same crop)
to 1 (all acres are planted with distinct crops).9 Appendix A.1 describes the diversity
indices in detail.

7Biodiversity is a concept that covers different realities, from phenotypical diversity, and genetic diversity, to species
diversity. Diversity can also correspond to the diversity of a specific community or ecosystem, or measure the differences
across them. This becomes an empirical issue given that these different dimensions often have a low statistical correlation
[37].

8For example, crop diversity is correlated with decreased pesticide use [28] [29] and land fragmentation.
9These two diversity indices are amongst the most frequently used. Another popular index, the Pielou index, is highly

correlated with the Gini-Simpson index (correlation of 0.97) and is omitted from the analysis.
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Figure 2: County-Level Richness over Time

Notes: The solid line represents the average value in every wave of the Census. The dotted lines represent the 10th and

90th percentile of the county-level values for the same wave.

Constructing both the richness and evenness indices requires a precise time series of local
cropland coverage. We develop a new method to link the different waves of the census
together, to account for the changing county geographic boundaries. Our machine learn-
ing algorithm uses historical weather, as well as topography data to predict the location
of agricultural areas within counties and over time, to reallocate all observed census data
to a common map of United States counties. Appendix A.2 provides more detail on
the methodology. We provide evidence in the appendix that our method outperforms
traditional geographical census linking methods.

We obtain a balanced panel of planted acres for 12 crops, including the most common
crops in the US: corn, soybean, wheat, and cotton.10 The data are county-level observa-
tions every five to ten years, depending on the frequency of the Census waves. We can
confirm previous findings of large-scale decreases in local crop diversity in the twentieth
century [20]. In Appendix C, we provide more context for these decreasing trends. The
increase in crop concentration is largely attributed to the reduction in the size of the crop
mix, rather than the reallocation of land within a fixed set of crops. Concentration is
jointly caused by the growing importance of corn and wheat in the United States agri-
cultural system, and the decline of oats, rye, barley, and potatoes, generating the sharp
decline in crop richness starting in the 1950s (Figure 2)11.

10The complete list of crops included is the following: rice, cane sugar, wheat, corn, cotton, potato, sweet potato, barley,
rye, tobacco, buckwheat, and oats. Results are robust to using a larger set of crops in an unbalanced panel.

11Our favored set of crops over which we measure diversity does not include soy, which is only accounted for in the
Census from 1920 onwards. Hence, our measures are orthogonal to the evolution of soy acreage. We show in the annex
that an expanded index also accounting for soy is very highly correlated with soy.
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2.3 Identification

Using the data described in Section 2.1 and 2.2, we obtain a balanced panel of all contigu-
ous United States counties, recording pest contamination and the diversity of cropland
areas over time. One empirical challenge is that crop diversity is endogenous. Factors
like soil quality, weather patterns, pest management practices, or transportation infras-
tructure are susceptible to influence both the pest diffusion and the crop mix of a given
county.

We address these endogeneity concerns with an instrumental variable approach combined
with a two-way fixed effects model. The inclusion of county and decade fixed effects in the
regression removes the effects of confounding variables stable respectively across space
and time. Some of the confounders listed above, however, are not absorbed by the fixed
effects. The goal of the instrument is to shift county-year-level crop diversity exogenously
to estimate the causal impact of crop diversity on pest contamination.

We use the variance of the distribution of crop revenues to instrument for crop diversity at
time t. We expect that a profit-maximizing farmer – everything else equal – will cultivate
fewer crops more intensively in counties and years characterized by an increase in revenue
variance across crops. Figure A.5 shows that as the standard deviation of expected crop
revenues increases, diversity decreases, confirming our hypothesis.

The distribution of expected county-year-level revenues is obtained by multiplying na-
tional prices with local potential yields for all crops. We obtain national-level crop prices
by averaging state-level prices reported in the census for all twelve crops in our sample.
Next, we compute crop-specific county-level theoretical output densities from the FAO
GAEZ models [43]. We choose to use a modeled measure of potential yields rather than
reported yields. The reason is that we want to measure expected revenues for all twelve
crops in our sample, for all US counties – and not only for the sample of crops that were
effectively planted in any given county. This ensures that the instrument captures all the
information that may have incentivized farmers to diversify their plantations.

For the instrumental variable to be valid, it needs to satisfy the exclusion restriction,
meaning that the impact of the instrument on pest diffusion must only be mediated by
crop diversity. We argue that the standard deviation in expected agricultural revenues
meets this criterion. The first component of the instrument, US crop prices, are de-
termined by the global demand and supply of crops. After controlling for decade fixed
effects, national prices are plausibly orthogonal to the local diffusion of pests. We pay
particular attention to the impact of the boll weevil on cotton prices. Cotton prices at
the national level remained globally stable between 1890 and 1915, the first twenty-five
years of the boll weevil crisis. Prices only spiked in 1920, following what the literature
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has considered as a US-wide commodity price crisis after the end of World War I [44].12

We then consider that the use of US-level prices, rather than state or county level, is suf-
ficient to recover price fluctuations that are exogenous to the pest shocks. Local expected
yields constitute the second part of the instrument. Taken from the FAO GAEZ models,
they are based on climate and topographic observations combined with agronomic mod-
els. These yields are precisely exogenous because they are not built using any relevant
information that would be associated with the diffusion of our pests, and not captured
by fixed effects. We compute expected output densities in low input and no irrigation
scenarios for all crops and counties.

Despite the inclusion of fixed effects, and our reliance on a plausibly exogenous instrumen-
tal variable, transitory and local shocks may still bias the estimation of the effect of crop
diversity on pest diffusion. To address such concerns, we also control for county-level to-
tal cropland area. This should account for the propensity of a county to be contaminated
by a pest. Additionally, we test the robustness of our findings in an additional exercise:
controlling for the expansion of respectively the railway and the highway networks (see
3).

3 Results

Our two-stage least-square approach amounts to estimating:

Crop Diversityct = α + γ1Zct +Xctγ2 + ηc + ηd(t) + εct First Stage
(1)

Pest Diffusionct = α + β1
̂Crop Diversityct +Xctβ2 + ηc + ηd(t) + νct Second Stage

(2)

where Zct is the instrument, ηc are county fixed effects, ηd(t) are decade fixed effects for
Census year t and Xct corresponds to a vector of controls. In our main specification, Xct

is the county-level total cropland area. The variable Crop diversityct corresponds either
to crop richness or to crop evenness. Pest Diffusionct is a dummy equal to 1 if county c

at period t is contaminated by the pest. Contamination is an absorbent state in both
cases. Standard errors are heteroskedastic robust.

Columns 1 and 2 of Table 1 present the results of the first stage in the boll weevil
sample. The instrument is significantly and negatively correlated with the Gini-Simpson
index (column 2). This is consistent with the hypothesis that profit-maximizing farmers
choose to grow a smaller set of crops when expected revenues across crops become more

12This spike in cotton prices has been specifically discussed as part of the general commodity crisis.
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dispersed. An increase by one standard deviation in the spread of crop revenues at the
county level will decrease crop evenness by 0.011, or 2% of its average value.13 We cannot
detect a statistically significant correlation between the spread of crop revenues and crop
richness in a county (column 1), due to the relative homogeneity in crop mix across boll
weevil-affected counties over 1890-1920. We will not interpret the boll weevil richness
results because of this lack of power. In the case of the imported fire ant (columns 3 and
4), both indices of local crop diversity show a statistically significant negative relation
with the cross-crop standard deviation in expected revenues. An increase by one standard
deviation in the spread of revenue will decrease richness by .14, or 2.6% of its average
value, and evenness by .02, or 5% of its average value.

Table 1: Diversity and Pest Diffusion: Revenues IVs (First Stage)

Richness Gini-Simpson Richness Gini-Simpson
(1) (2) (3) (4)

Std. Revenue per Ha 0.0003 -0.0003∗∗ -0.0002∗∗∗ −3.21× 10−5∗∗∗

(0.0009) (0.0001) (2.54× 10−5) (3.84× 10−6)

Observations 4,043 4,043 25,052 25,052
Counties 1142 1142 3018 3018
R2 0.81153 0.60860 0.81460 0.57231
F-test (1st stage) 0.13432 7.8474 40.542 88.271

County fixed effects ✓ ✓ ✓ ✓
Decade fixed effects ✓ ✓ ✓ ✓
Sample 1895-1930 1895-1930 1940-1997 1940-1997

Notes: This table contains the first stage results from the instrumental regression shown in Table 2. Our instrumental
variable corresponds to the county-level standard deviation in crop revenue. All regressions control for county-level
total agricultural area, as well as county and decade fixed effects. The samples are limited to 1890-1930 for the boll
weevil, and to 1940-1997 for the imported fire ant. Standard errors are heteroskedasticity robust. Significance levels:
*** p<0.01, ** p<0.05, * p<0.1.

We report results in Table 2. In columns 1 and 3 of Panels A and B, we control for
decade and county fixed effects, as well as total planted area. Columns 2 and 4 report our
preferred specification with the inclusion of the instrumental variable. This specification
absorbs any temporal and location-specific factors that might be correlated with crop
diversity. Additionally, in panel A column 4 as well as panel B columns 2 and 4, the
instrument effectively carves out some exogenous variation from the crop diversity indices
(Table 1).

While the IV results – when significant – always show a negative relation between local
crop diversity and pest diffusion, this is not the case for the OLS results. Specifically,
for the imported fire ants, the OLS regressions show a positive statistically significant

13The standard deviation of the instrument over the period 1890-1920 is 55.
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relation between diversity and spread. We interpret this as the presence of an omitted
variable bias that distorts the sign of the results. For the more recent periods, where
pesticide use is more frequent, it is more likely that low-diversity counties are also more
pesticide-intensive and more protected from the spread of imported fire ants. This bias
is less likely in the case of the boll weevil, as up to the 1920s, no pesticide was efficient
at curbing its spread, and the take-up of pesticides in agriculture is largely a post-WW2
phenomenon.

Overall, crop diversity is significantly and negatively associated with the spread of both
pests. Increasing the evenness of a county’s crop allocation by 0.1 reduces the likelihood
of contamination in a given year by the boll weevil by 61%. This large effect may be
explained by the specialized nature of the pest and two competing mechanisms: 1) a less
frequent encounter with cotton for any diffusion path through the landscape (more frag-
mented land, less spatial connection in the location of cotton) and 2) a more fragmented
land which might leave fewer opportunity for the boll weevil to hibernate over the winter.
We cannot differentiate between these two channels and our results should be interpreted
as their joint impact.

The imported fire ant is slowed down by both crop richness and evenness: one additional
crop type grown in a county reduces the likelihood of imported fire ant contamination
by 16%, while a 0.1 increase in crop evenness decreases the likelihood by 8.3%. Both
richness and evenness act as proxies for the fragmentation of landscapes, which comes
with increased competition for ecological niches, and act as a barrier to the imported fire
ant diffusion.

Robustness One may still be worried about the omission of a variable influencing
both crop diversity and our outcome of interest, biasing our results. For example, the
development of the interstate highway network between 1940 and the late 1970s [45]
poses a threat to identification, as the imported fire ants are known to have traveled with
agricultural commodities.14 We expect better coverage by transportation networks to
induce both a higher likelihood of pest contamination as well as a higher crop diversity
– as farmers can take advantage of easier market access. This down-biases the estimates
of the effect of crop diversity on pest diffusion. While transportation networks are less of
a concern in the case of the boll weevil – as its spread mostly followed wind patterns [5]
– the expansion of the rail network might still pose a threat. Table B.4 in the Appendix
B presents results where we control for respectively the expansion of the rail and the
interstate highway networks.

Specifically, in Panel A, we include the distance between the centroid of a county and the
14The rail network developed mostly before 1930, and market access via rail is absorbed by county fixed effects in the

imported fire ants sample.
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Table 2: Diversity and Pest Diffusion

Panel A Boll weevil (0/1)

OLS IV OLS IV
(1) (2) (3) (4)

Richness -0.0423∗∗∗ 5.200
(0.0068) (16.46)

Gini-Simpson -0.4499∗∗∗ -6.137∗
(0.0704) (3.134)

Observations 4,043 4,043 4,043 4,043
Counties 1,142 1,142 1,142 1,142
R2 1.0000 0.99964 1.0000 0.99999
F-test (1st stage) 0.13432 7.8474
County fixed effects ✓ ✓ ✓ ✓
Decade fixed effects ✓ ✓ ✓ ✓

Panel B Imported Fire Ants (0/1)

OLS IV OLS IV
(1) (2) (3) (4)

Richness 0.0074∗∗∗ -0.1595∗∗∗
(0.0016) (0.0430)

Gini-Simpson 0.1649∗∗∗ -0.8264∗∗∗
(0.0131) (0.2252)

Observations 25,052 25,052 25,052 25,052
Counties 1,988 1,988 1,988 1,988
R2 0.59843 0.40394 0.60129 0.48373
F-test (1st stage) 40.542 88.271
County fixed effects ✓ ✓ ✓ ✓
Decade fixed effects ✓ ✓ ✓ ✓

Notes: This table contains the second stage results from the instrumental regression. We instru-
ment crop diversity with county-decade-level standard deviation in expected crop revenue. All
specifications control for county-level total agricultural area, as well as county and decade fixed
effects. In Panel A, the sample corresponds all counties growing cotton between 1890-1930 for
the boll weevil. In Panel B, we include observations for all counties between 1940 and 1997. The
standard errors shown are heteroskedasticity robust. Significance levels: *** p<0.01, ** p<0.05,
* p<0.1.

nearest rail segment. In Panel B, we control for the distance of the county to the nearest
interstate segment. Results are broadly unchanged. In the imported fire ants sample,
instrumental variable estimates are larger (in absolute value) than in Table 2, suggesting
that the highway network was biasing the effect towards zero as expected.

We replicate the analysis for the imported fire ant after removing the counties located
in California and Arizona. Results are presented in Table B.5. These counties were
likely contaminated through commodity trade, and as such the relation between their
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agricultural diversity and likelihood of contamination is not informative of the channels
we want to bring forward. The OLS coefficients are almost identical to our main results,
the ones of the IV are slightly smaller in absolute value, moving from -.1595 to -.1459 for
richness, and from -.8264 to -.7876 for the Gini-Simpson index, and still highly significant.

Finally, in Figure B.6, we test the robustness of the results after controlling for spatial
correlation. Results generally stay significant for small Conley threshold values (30km).
However, coefficients become noisy when considering higher spatial correlation thresholds.
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4 Discussion

In this paper, we develop a novel method to link the United States Census of Agriculture
over time. We use this data to corroborate recent results showing significant declines in
local crop richness and evenness in the United States over the twentieth century. We
then document the causal relationship between local crop diversity and pest diffusion
for two of the most important United States agricultural pest shocks: the boll weevil
(1890-1920), and the imported fire ant (1940-1997). A higher level of crop evenness slows
down the progression of the boll weevil, a specialized pest with few natural predators.
One potential mechanism behind this relationship is the role played by the fragmentation
of agricultural landscapes, specifically the lesser spatial contiguity of cotton fields. Both
crop richness and evenness hinder the diffusion of imported fire ants, an omnivorous pest.
The diversity indices serve as effective proxies for the local saturation of ecological niches,
explaining the challenging implantation of imported fire ants in this context.

To our knowledge, we are the first to estimate the effects of crop diversity on pest diffusion.
We also advance and complement different strands of the literature. First, we contribute
to the growing literature studying the consequences of the sharp decline in local crop
diversity in the United States. Second, we bring a new perspective to the analysis of the
development of intensive agriculture over the twentieth century, bringing evidence that it
may have contributed to the increased vulnerability to pest contamination. Finally, we
add to the literature linking biodiversity to the limited spread of diseases and pests.

Our findings open the door to several interesting questions. Our results hint at the
important role of pest characteristics – such as their specialization, the spatial distribution
of their enemies and hosts, and their favored modes of transport – on pests’ diffusion
patterns. More research is needed to understand the mechanistic interactions between
crop diversity, biodiversity more generally, and pest contamination. This understanding
is essential for enhancing cropland resilience to pest contamination.
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A Data and Methods

A.1 Measuring crop diversity

Diversity is a rich concept with many different meanings. In our case, we use local
crop diversity as a proxy for the fragmentation of cropland, the competitiveness of local
ecological niches, and the presence of natural predators or competitors to our studied
pests. First, we construct a crop richness index by computing the number of crop species
present in each county in each decade.15 Second, we construct two different measures of
evenness, in order to describe the homogeneity of land allocation across these crops. The
Gini-Simpson index corresponds to the probability of inter-species encounters.16 In our
context, we compute the probability that two hectares of land sampled at random from a
given county are covered by the same crop. The Pielou index is a concentration measure
and captures the commonness or rarity of a species in a county year.17 All three of these
diversity measures are associated to landscape segmentation in different ways. Using a
variety of measures allows to compare their relative impact on pest diffusion and to draw
a more complete picture of the effect of crop diversity on pest diffusion.

Computing these indices is challenging in our context. Ideally, we would derive the
indices using the universe of crops grown in the county of interest. Because we build our
measures using historical Census data, we are limited by the number of crops that were
recorded consistently over time. We use two different subsets of crops for which we can
construct a balanced time series of planted acres. We focus as much as possible on crop
categories that are not redefined throughout the census. The first sample is based on the
twelve crops with acreage reported consistently from 1880 onwards. Crops included in
this sample are rice, cane sugar, wheat, corn, cotton, potato, sweet potato, barley, rye,
tobacco, buckwheat, and oats.

We also measure crop diversity using a larger thirty-eight-crop subset, composed of the
same crops as previously listed, to which we add several specialty crops.18 This index is
built from 1930 onwards due to a lack of records for some of these crops before the turn
of the twentieth century.

Table A.1 presents the correlation between the diversity index obtained from the two
subsets of crops described above. As expected the richness index roughly doubles when

15Crop richnessct =
∑

k∈K 1 where K is the set of crop grown in county c at time t
16Gini-Simpsonct = 1−

∑
k∈K p2kct where K is the set of crop grown in county c at time t and pk is the number of acres

allocated to crop k.
17Pielouct =-

∑
k∈K pkct ln pkct∑

k∈K 1
where K is the set of crop grown in county c at time t and pk is the number of acres

allocated to crop k.
18Crops included in this index are soybean, rice, wheat, corn, cotton, sorghum, peas, beans, potatoes, peanuts, sweet

potatoes, barley, rye, flax, tobacco, buckwheat, oats, asparagus, beets, broccoli, carrots, cauliflower, celery, collards,
cucumber, eggplants, escarole, kale, lettuce romaine, okra, pumpkin, radish, squash, turnip, millet, cantaloup, raspberries,
strawberries, watermelon.
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Table A.1: Correlations Within Diversity Indices Across Crop Sets

Measures: Richness Pielou Gini-Simpson

Correlation 12-crop 1.989∗∗∗ 0.8714∗∗∗ 1.169∗∗∗
vs 38-crop samples (0.0024) (0.0011) (0.0016)

Notes: Correlations between county-level diversity indices obtained using the twelve-crop sample
versus the thirty-eight-crop sample. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

going from the 12-crop sample to the 38-crop sample. By contrast, the Pielou and Gini-
Simpson indices exhibit a correlation close to one between the two samples: 0.87 and
1.17 respectively. Because these are highly correlated and given that the 12-crop sample
provides us with the longest time series and the most county-decade observations, we run
our analysis with the smaller set of crops.

Figure A.1 shows the distribution and correlations between our three diversity measures.
All measures are positively correlated: a county with a high crop richness is more likely
to also exhibit a high evenness: the correlation between richness and the Pielou index is
0.67. We also find a correlation of 0.97 between the Pielou and the Gini-Simpson indices.
We thus decide to run our analysis using only richness and the Gini-Simpson index.

Figure A.1: Correlation across Diversity Indices

Notes: The diversity indices are computed using the twelve-crop sample for the period 1890-1997.
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A.2 Linking the US Census of agriculture over time

US county boundaries underwent many changes over the 1840-2021 period, making the
linking of Census data over time challenging. In order to account for these changes, one
needs to use a stable map of US counties and reallocate the data as collected in each
Census wave to that stable map.

Two traditional methods exist to perform this reallocation exercise. The first method
entails identifying the smallest time-invariant geographic units - which could be much
larger than a county. This method is assumption-free, and therefore quite useful, but
leads to significant aggregation if one wishes to look at census data over more than a few
decades.19

The second method distributes the data to a selected target map assuming homogenous
distribution of the measured variables over the old geographic units. In what follows, we
call this method the area-based method. This algorithm has been the preferred one for
ecological and economic work based on the US Census or the US Agricultural Census
[46, 20]. Recently, Eckert et al (2021) [25] published readily available datasets of aggre-
gation weights for applying this method to all US counties since 1790. While easy to
implement, this method relies on a strong spatial homogeneity assumption, unlikely to
hold in the agricultural context. Figure A.2 shows the 2021 distribution of agricultural
coverage in Kansas. White outlines correspond to the boundaries of the 1997 US counties.
Agricultural coverage is far from being homogeneous within each shape. This makes the
area-based linking method hypothesis implausible, leading to mismeasurement bias when
applying this method. In a regression context, this mismeasurement is likely to cause
an omitted variable bias, rather than a classical measurement error, as well as to create
heteroskedasticity in the errors.

We propose a machine-learning-based method to ease the homogeneity assumption of the
area-based linking method and reduce the bias in agricultural Census linking exercises. We
start by training a cropland coverage prediction model using fine-grid land use from the
Cropland Data Layer [47], weather data from PRISM [48] and topographic data from the
Landfire dataset [49]. This model can then be applied to any historical weather dataset
to predict where crops were grown. The spatial resolution of the weather data however
needs to be smaller than a county, which is the case for the historical PRISM series which
we use. With land use predictions at hand, we refine the area-based aggregation weights,
only taking into account the predicted agricultural areas to compute reallocation weights.
Figure A.3 provides a stylized example comparing the outcomes of the area-based and
the machine-learning-based linking methods.

19Horan and Hargis developed such a county crosswalk for 1840-1990, which is freely available on the ICPSR website.
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Figure A.2: Spatial Distribution of Agricultural Land in Kansas - 2021

Notes: Lighter shades of green indicate a higher agricultural share within the 4km x 4km pixel.
White shapes correspond to the boundaries of the US counties in 2021. Agricultural land is not
homogeneously distributed within counties.

A.2.1 Machine learning based agricultural Census linking method

The machine-learning-based agricultural Census linking method relies on the observation
of the spatial distribution of agricultural area within counties. Unfortunately, data on
sub-county cropland fractions do not exist for the period of interest (1880-2012). These
cropland fractions can however be predicted at a fine scale using historical weather data,
as well as topographic data. In what follows, we describe the steps of the machine-
learning-based linking algorithm.

First, we build a model of agricultural area spatial distribution using fine-scale land use
data from the Cropland Data Layer (CDL) for the period 2008-2020. Predictive features
are PRISM weather data available at a 4X4km grid for the contiguous US, and elevation
and slope data from the Landfire dataset [49]. An XGboost model is used to predict the
presence of agriculture over each pixel. Out-of-sample, we reach an accuracy of 85.5%
for 2021. In table A.2, we provide a discretized confusion matrix, testing the accuracy
of our model. We predict the percentage of agricultural coverage in each PRISM cell for
2021, using 2021 PRISM weather data, and then compare it with the 2021 cropland data
layer. Predicted and target values are continuous, we thus bin the values to produce the
confusion matrix. We see that the diagonal contains the largest number of cells and that
numbers decrease as we move further off the diagonal, a sign of the model’s accuracy.
However is not as accurate to precisely predict the acreage in medium-range cells, with
coverage ranging between 25% and 75%.

Second, we use this model to predict cropland presence for each year of the agricultural
Census between 1880 and 1997. Because PRISM only goes back to 1895, we use the
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Figure A.3: Stylized example - Area-based versus Machine-learning-based methods to
linking agricultural Censuses

A B C D

A B C D

t1

t2

001 002

001’ 002’ 003’
Assume that two counties 001 and 002 at time t1 are split in half by time t2 and rearranged to create counties 001’,
002’, and 003’. Second, assume that the agricultural area is not homogeneously distributed over county 001, green shapes
denote agricultural areas. We are interested in creating a time series of an agricultural stock variable X, e.g. corn acreage,
and we need to reallocate measures of X at t1 to counties observed at t2. The area-based linking method is blind to
the distribution of agricultural area and we get: X001′ = 0.5X001, X002′ = 0.5X001 + 0.5X002 and X003′ = 0.5X002.
The machine-learning-based linking method aims at predicting the agricultural coverage at a sub-county level and we get:
X001′ = 0, X002′ = X001 + 0.5X002 and X003′ = 0.5X002. Note that while improving on the first method, the second
method is not hypothesis-free: we still need to assume that within areas B, C, and D, which are the agricultural areas in
the picture above, the variable X is homogeneously distributed.

Table A.2: Confusion Matrix for 2021 CDL

0 - 25% 25% - 50% 50% - 75% 75% - 100%
0 - 25% 275511 23495 5666 238

25% - 50% 21491 15523 5902 447
50% - 75% 7349 15671 11232 1415

75% - 100% 1957 10428 19309 7975
Notes: Number of PRISM cells per bin of agricultural coverage. Rows indicate the true catego-
rization, and columns are the predicted category. We also obtain an R2 of 0.63 and a RMSE of
0.17. Note that assuming a homogeneous complete agricultural coverage of the US would lead to
an RMSE of 0.87.

1895-1924 average weather for census years prior to 1900.

Finally, we choose the 1997 US county map as our target map and intersect it with every
historical county map. For stock variables20, we use the agricultural area predictions and
compute the fraction of agricultural area for all intersected areas. Reallocation weights
are given by

̂Ag.Areaj
̂Ag.AreaJ :j∈J

where J is the set of counties in 1997.

A.2.2 Comparing area-based versus machine-learning-based linking methods

The CDL and other fine-grain cropland coverage data sources only exist for relatively
recent years, whereas the county-level map of the US mostly fluctuates in the early years
of the Census (end of the nineteenth and beginning of the twentieth century). As such,
the biases introduced by the intersected area method will be higher for data gathered in
the earlier years of the census.

To test our algorithm against the area-based linking method, we choose to build an ex-
20We note that mean variables would use the origin county total agricultural area, rather than the destination one, as a

normalization. We provide both sets of weights in our dataset.
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ample using the 1870 map of US counties. We do not observe sub-county agricultural
data for 1870 and thus use the fine resolution 2021 cropland data (CDL) to construct a
"counterfactual ground truth" for this 1870 map, i.e. we attribute 2021 land use patterns
to 1870 counties and use this fake map as our ground truth. Our goal is then to convert
this 1870/2021 map into a map of the same land cover with 1997 county boundaries.

First, we compare the accuracy performance of the two linking methods when reallocating
the total cropland area. Figure A.4 plots the distribution of reallocation weights obtained
using the two algorithms as well as the true weights. one for stock weights, and one for
averages. The prediction method outperforms the traditional one at almost every point of
the distribution. The reason for this improvement is that while most of the cells probably
have positive agricultural area, most are also only partially covered by agriculture, thus
making the homogeneous land cover assumption too coarse.

Figure A.4: Comparing the distribution of agricultural fraction across linking methods

Notes: We compute true 1870/2021 county-level agricultural fractions, with the ones predicted off of 1870
counties using either the area-based method or our machine-learning-based one. We note that our distribution
is almost always closer to the true distribution.

Second, we check the performance of the machine-learning-based algorithm in correctly
reallocating crop-specific areas. We compute the mean squared errors of the two methods:
first, when aggregating the data using the traditional area-based crosswalk (all area), and
second when using the agricultural area base crosswalk. Results are presented in Table
A.3. Our method outperforms the area-based one for corn and wheat, and slightly under-
performs for soy, where error margins are smaller. The variation in performance across
crops is due to the relative spatial homogeneity of counties where these crops are grown. It
then seems that soy is grown more homogeneously in counties that cultivate soy, relative
to wheat and corn.
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Table A.3: Crop-Specific Matching Improvement

Area-based ML-based RMSE gain
Corn 0.09 0.01 88%

Wheat 0.10 0.04 60%
Soy 0.03 0.04 -33%

Notes: The table presents the sum of squared distances between true county crop shares, and
the ones obtained using either the crosswalk assuming homogeneous distribution, or our crosswalk
based on agricultural areas

A.3 Instrument variable approach

Figure A.5 shows the correlation between the standard deviation in expected crop rev-
enues and county-level measures of crop diversity. As such, these are indicative of the
variation used in the first stage of the two-stage instrumental variable approach.

Figure A.5: Standard deviation of expected crop revenues and crop diversity

Notes: Crop diversity is measured at the county level over the period 1890-1997.
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B Robustness

Railway expansion and the diffusion of the boll weevil We run the same instru-
ment regression design as in 2, controlling for the evolving shape of the railway network
across 1890-1930, a period that also corresponds to its development. Each country’s re-
lation to the railway network is measured by the distance between its centroid and the
nearest railway segment. The distance to the railway network has no statistically signif-
icant relation to a county’s contamination status, in both the OLS and the instrument
variable regressions, for the two measures of diversity. As discussed previously, the lit-
erature expects that the boll weevil did not travel alongside agricultural commodities.
We then expect the rail to be a bad control in our context, taking away some of the
exogenous variation in county-level crop diversity. We note, however, that in the case of
the richness index, the IV regression becomes significant with a positive sign when we
include counties’ varying distances to the rail network.

Highway expansion and the diffusion of the imported fire ant We run the same
instrumental regression design as in Table 2, additionally controlling for the evolution of
the interstate network - the major change to the United States transportation network
over the second half of the twentieth century. Each county’s relation to the interstate
is measured by the distance between its centroid and the nearest interstate segment,
and is computed using data from Baum-Snow (2007) [45]. The effect of distance to
the interstate highway on imported fire ant diffusion is large, negative, and statistically
significant. This indicates that the closer counties are to the interstate, the more likely
they are to be contaminated by the imported fire ants. As such, a decrease of 100km in
a county’s distance to the interstate is associated with an average increased probability
of contamination of 3.56%. This coefficient remains stable when we use either richness
or the Gini-Simpson index as a measure of local crop diversity. While this control is not
meant to have a causal interpretation, this negative significant sign likely relates to the
role of transportation networks in favoring the spread of the imported fire ant. Results
remain largely unchanged. The coefficient of interest increases slightly in absolute value,
going from -.160 to -.202 for richness, and from -.826 to -1.04 for the Gini-Simpson index.
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Table B.4: Crop Diversity and Pest Contamination: Transportation Networks Controls

Panel A Boll Weevil (0/1)

OLS IV OLS IV
(1) (2) (3) (4)

Richness -0.0417∗∗∗ 0.9251∗
(0.0068) (0.5421)

Gini-Simpson -0.4498∗∗∗ -5.679∗∗
(0.0702) (2.744)

Observations 4,043 4,043 4,043 4,043
Counties 1,142 1,142 1,142 1,142
R2 1.0000 0.99999 1.0000 1.0000
F-test (1st stage) 3.9095 8.3411
County fixed effects ✓ ✓ ✓ ✓
Decade fixed effects ✓ ✓ ✓ ✓
Distance to Rail ✓ ✓ ✓ ✓

Panel B Imported Fire Ants (0/1)

OLS IV OLS IV
(1) (2) (3) (4)

Richness 0.0060∗∗∗ -0.2021∗∗∗
(0.0015) (0.0467)

Gini-Simpson 0.1541∗∗∗ -1.042∗∗∗
(0.0126) (0.2392)

Observations 25,052 25,052 25,052 25,052
Counties 1,988 1,988 1,988 1,988
R2 0.62684 0.32485 0.62943 0.45832
F-test (1st stage) 39.462 86.711
County fixed effects ✓ ✓ ✓ ✓
Decade fixed effects ✓ ✓ ✓ ✓
Distance to Highway ✓ ✓ ✓ ✓

Notes: This table contains the second stage result of our instrument variable regressions, for
respectively 1890-1930 for the Boll-Weevil, and 1940-1997 for the imported fire ant. As in the
main result section (Table 2), we instrument county level crop diversity with standard deviation
in expected crop revenue. The regressions control for county-level total agricultural area as well
as county and decade fixed effects. Additionally, we control for county-level distance to resp. the
railway (1890-1930), and the highway (1940-1997). Standard errors are heteroskedasticity-robust.
Significance levels: *** p<0.01, ** p<0.05, * p<0.1.
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Table B.5: Crop Diversity and Pest Contamination: Dropping California & Arizona

Imported Fire Ants (0/1)

OLS IV OLS IV
(1) (2) (3) (4)

Richness 0.0074∗∗∗ -0.1459∗
(0.0026) (0.0769)

Gini-Simpson 0.1659∗∗∗ -0.7876∗
(0.0224) (0.4490)

Observations 25,006 25,006 25,006 25,006
Counties 1,988 1,988 1,988 1,988
R2 0.59854 0.43495 0.60145 0.49292
F-test (1st stage) 45.991 92.233
County fixed effects ✓ ✓ ✓ ✓
Decade fixed effects ✓ ✓ ✓ ✓

Notes: This table contains the second stage result of our instrument variable regressions,
for the Imported Fire Ant. As in the main result section (Table 2), we instrument county
level crop diversity with standard deviation in expected crop revenue. The regressions
control for county-level total agricultural area as well as county and decade fixed effects.
Additionally, we remove counties located in California and Arizona, as they were likely
contaminated through commodity trade. Standard errors are heteroskedasticity-robust.
Significance levels: *** p<0.01, ** p<0.05, * p<0.1.

Figure B.6: Crop Diversity and Pest Contamination: Alternative Standard Errors

Notes: This figure presents the robustness
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C Additional Results - Crop diversity trends

Figure C.9 shows the trends in crop evenness over time. In Panel (a) evenness is computed
on the sample of 12 crops used throughout this analysis. In panel (b), we compute the
Gini-Simpson index on the county-specific subset of crops (out of the twelve previously
used) that are constantly cultivated in the considered county over the period 1890-2020.
As such, each county has its crop mix for which evenness is computed. Comparing the
two panels allows us to get a sense of the role of the extensive margin (crops coming
in and out of a county’s crop mix over time) versus the intensive margin (holding the
crop mix constant, variation in their respective land allocations) in explaining the trends
in evenness. The trend is much flatter in panel (b). This indicates that the drop in
observed evenness is in large part driven by counties stopping production for some crops
they would previously have grown.

In Figure C.10, we test the robustness of our measure to the homogenization of agriculture
driven specifically by corn. Over the twentieth century, corn and soy played a large role
in the development of intensive large-scale agricultural systems in the US. Soy is not
accounted for in our 12-crop set, so the evolution of its cropping pattern does not impact
our index. Corn is, however, and comparing the two graphs, we can account for its role in
driving crop evenness down over time. The two graphs do not show large differences, and
as such it seems that corn in itself, and the joint corn-soy intensive agricultural system,
is not the only driver of cropland homogenization.

In Figure C.11, we show the evolution of the count of US counties growing each crop in
each year of the census. We see that the crops that are most dropped from the counties’
crop mixes are the following ones: oats, rye, potatoes and sweet potatoes, cotton, tobacco,
and buckwheat. These are thus the ones driving the extensive margin changes discussed
previously.
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Figure C.7: Changes in Local Crop Diversity over time

(a) Richness Index (b) Evenness Index

Notes: The diversity indices are computed using the twelve-crop sample.
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Figure C.8: Trends in Local Crop Diversity

(a) Richness Index (b) Gini Simpson Index

Notes: The diversity indices are computed using the twelve-crop sample.

Figure C.9: Trends in Evenness: Extensive and Intensive Margins

(a) Extensive and Intensive Margins (b) Intensive Margin

Notes: Panel (a) presents the trend of the Gini Simpson index computed using the sample of 12 crops used throughout
the paper. The index in Panel (b) is computed over the maximum county-level stable crop set, or the set of crops for
which there exists at least one county with positive acreage in each decade over the period.

Figure C.10: Trends in Evenness: Role of Corn

(a) Initial Crop Set (b) Excluding Corn

Notes: Panel (a) presents the trend of the Gini Simpson index computed using the sample of 12 crops used throughout
the paper. The index in Panel (b) is computed over the small set of crops used throughout the paper, excluding corn.
Panel (b) highlights the fact that the loss of diversity over the period 1890-2010 in the US is not only driven by the
development of large farms specialized in corn.
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Figure C.11: Number of Counties growing each Crop
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