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Abstract: Adaptation costs are one of the main missing elements from the existing
literature on the effects of climate change. Policy to address climate change depends on
how costly it is for people to adapt to a changing climate, but a lack of cost-related data
means that such estimates are rare. In this paper, we use uniquely rich data on agriculture
in France to provide novel, direct estimates of the marginal cost of adapting to changing
temperatures. The dataset is a farm-level panel with measures of outputs, inputs, and prices
from 1994–2018. We merge the farm data with measures of realized and forecasted weather.
Controlling for realized weather, we use forecasts as information shocks to estimate costs
of ex ante adaptation. Within the period of adaptation, we find that for the average farm
in France, the cost of adaptation to heat shocks has been low. In contrast, the benefits of
adaptation have been large. This difference is driven by the behavior that farms engage in
when responding to forecasts. They mainly use the forecasts to change the timing of planting
and harvesting decisions, as well as their crop mix, rather than to change costly inputs. The
large, observed difference between the benefits and costs of adaptation contradicts a widely
used sufficient statistic approach to estimating climate damages. We further show that
while costs of adaptation are low in the period of adaptation, future periods are marked by
increases in costs and decreases in profit, potentially capturing the dynamic nature of farms’
adaptation strategies. Finally, we show that the current forms of adaptation implemented
are less likely to remain relevant in a warmer world.
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1 Introduction

The potential consequences of climate change are a central concern for our century. A large and growing
body of research seeks to understand the effect of climate change on the economy. One of the long-standing
challenges to this work is estimating the benefits and costs of adaptation—the actions people take to prepare
for or adjust to a changing climate. As argued by Carleton et al. (2022) and Kelly et al. (2005), policymakers
should be interested in the sum composed of the damages of climate change and the costs of adaptation
because a policy to mitigate climate change would not only prevent damage but would also save people
from paying adaptation costs. In this paper, we provide novel estimates of the costs of adaptation in the
agricultural sector.

The challenge to estimating adaptation costs is primarily a lack of data. Even in agriculture, one
of the sectors of the economy most directly affected by climate change and therefore widely studied in the
climate economics literature, data on costs are typically unavailable. Crop yields, profits, and land values are
commonly observed and have been used to estimate the damages from changing weather (e.g., Mendelsohn
et al., 1994; Deschênes and Greenstone, 2007; Schlenker and Roberts, 2009). But the input levels and input
prices needed to estimate adaptation costs are rarely observed. And this lack of cost data is not limited to
the agricultural setting. Recent work on temperature-related mortality estimates adaptation costs indirectly
by using estimates of adaptation benefits to bound unobservable adaptation costs (Carleton et al., 2022).

We overcome this challenge by using a uniquely rich panel dataset on French agriculture from 1994-
2018. The dataset contains directly observed, precise cost and revenue data at the farm-level. We observe the
data for a representative set of farms repeatedly surveyed across multiple growing seasons. The data allow us
to recover independent estimates of the marginal costs and benefits of adaptation to weather shocks. A clear
advantage of observing a repeated panel of farms is that we can also measure the structure of adaptation
costs over time, i.e. when farms take an adaptation action at t, how their costs respond both at t and in
future periods. Many adaptation actions likely entail dynamic outcomes, here we can observe immediate
costs but also costs over time.

We merge the agricultural data with data on forecasts and realizations of temperature. We focus on
measures of growing season growing degree days (GDDs) and heating degree days (HDDs) at each farms’
locations. GDDs provide a measure of exposure to moderate temperatures, while HDDs measure exposure
to extremely hot temperatures. Empirically, we control for realized weather and use the forecasts to isolate
the farmers’ responses to weather-related information shocks. These information shocks cleanly identify the
effect of changes in behavior by the farms in anticipation of upcoming weather events and therefore allow
us to estimate the costs and benefits of their ex ante adaptation to weather. The farm-level panel data also
allows us to include farm-level fixed effects, a more granular control than previous studies and one that helps
address the challenges set by recent work highlighting the potential endogeneity of local climate (Braun and
Schlenker, 2023).

The results show that within period, farmers are able to leverage heat forecasts to generate relatively
large revenue gains at small costs. In comparison, farms respond to more moderate temperature forecasts
by increasing the scale of their production, at an equivalent marginal cost. Both these results hold across
alternative specifications and robustness tests. Again making use of the rich farm-level data, we show that
adaptation to heat shocks in France has mainly taken the form of ex ante timing changes affecting different
steps in the growing season, as well as crop switching. We identify two potential patterns of switching from
high heat-sensitive crops towards less sensitive ones: away from sunflower and towards colza, away from corn
and towards wheat. We further observe increases in the land area allocated to peas and beans in line with
the results of Aragón et al. (2021). As such, French farmers have so far been able to implement within-period
low cost/high gain adaptation strategies in response to heat shocks.

The differences in the cost and revenue consequences of ex ante farm adaptation naturally translate
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into net profit gains of ex ante adaptation. In a second section, we investigate the farm-level profit responses
to forecasted and realized weather. We further discuss the implications of these net positive profit responses
for the applicability of the static envelope theorem to our context. In a climate change damages setting,
the envelope theorem states that the cost and benefit consequences of re-optimizing production in response
to marginal weather variation should offset each other. In our empirical context, this correspondence does
not hold. The envelope theorem has been invoked by recent studies of climate change to provide estimates
of adaptation costs (Deschênes and Greenstone (2007), Hsiang (2016), Deryugina and Hsiang (2017), Merel
et al. (2022), Carleton et al. (2022)).1 In particular, the envelope theorem allows one to equate marginal
benefits and marginal costs of adaptation, and hence to infer a measure of the costs of adaptation.

We discuss the potential reasons for the breach of the static envelope theorem. A first element is
that growing and heating degree days temperature aggregations bring together marginal and non-marginal
variations in weather. Over our period of study, growing degree days are mostly composed of marginal vari-
ations,2 while heating degree days are mostly composed of non-marginal variation. This source of variation
tracks with our observed, statistically indistinguishable cost and benefit responses to forecasted GDDs, and
net-positive profit responses to forecasted HDDs. A second element of answer is the difference in nature
of the response to forecasted growing and heating degree days. Responses to forecasted GDDs imply some
timing changes, as well as input responses, while responses to forecasted HDDs are uniquely driven by sig-
nificant timing and cropping changes. These changes are likely to drive non-continuous changes in farm-level
profits, and are hence less suited to the assumptions of usual envelope theorems.

Focusing on the within-period consequences of ex ante adaptation does not, however, provide a com-
plete picture of the consequences of adaptation. We further investigate the profit and cost response to ex
ante adaptation over time. While the period of the ex ante adaptation is marked by net profit gains, the
following two periods show significant profit losses. The cost movement parallels the evolution of profit, with
increases in costs in future periods. Overall, it seems that farmers’ ex ante adaptation leads to a net decrease
in their present discounted flow of profit. Under the condition that farmers are rational and expect these
future losses, this implies that marginal heat shocks also come with negative and significant profit losses. The
losses observed under adaptation should be a lower bound for the value of these losses under no adaptation.
Because we identify crop switching as one of the main adaptation strategies used by farmers, the presence of
these future costs suggests that changes to one’s crop mix entail switching costs. The presence of such costs
has been central to the growing dynamic land use literature (Livingston et al. (2008), Scott (2013), Burlig
et al. (2024)) but we are one of the first papers to recover evidence for them in a reduced form setting.

In a last step, we investigate whether the farm responses to forecasted HDDs are likely to be good
indicators of future adaptation strategies to climate change in France. Specifically, we highlight the hetero-
geneity of responses to the scale of heat shocks experienced by farms. To do so, we select the top decile of the
distribution of department-level HDD realizations, and re-run our analysis on that subset of bad years. We
find that costs and benefits of adaptation evolve significantly as we move to these hotter years. We first stress
the appearance of costly on-the-spot adaptation in the form of input increases and storage decreases, which,
jointly, appear to be successful at mitigating the negative impacts of heat realizations. ex ante adaptation
shifts as well. From relying mostly on timing changes to generate positive profit gains, ex ante adaptation
now happens earlier, reacting to two-month ahead forecasts, and implies a down-scaling of production and
an associated decrease in production costs.

With these results, we can conclude our paper by saying that—so far—French farmers have been
relying on weather forecasts to adapt their production decisions. They have leveraged GDD forecasts to
increase their scale of production, and HDD forecasts to shift major production events across the growing

1See reviews from Carleton and Hsiang (2016); Auffhammer (2018)
2We code marginal variations as variations more than 1.96 standard deviations away from the usual hour-day-month real-

ization over the last thirty years.
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season, as well as the composition of their crop mix. Yet, ex ante adaptation to forecasted heat already seems
to lead to net profit losses, implying that marginal heat shocks already have the capacity to inflict profit
losses to French farms. Future warming could worsen these losses by constraining the adaptive capacity of
farms. In the subset of worst HDD realizations over 1994-2018, we see that farms lose their ability to turn
forecasts into profit gains within their period of adaptation. Instead, they start leveraging heat forecasts in
order to downscale their production and reduce their production costs.

Related Literature: This paper is first and foremost related to the literature on climate adaptation
and climate damages. This literature has long debated how to provide comprehensive estimates of the
consequences of climate change on human systems. This in turn has implied accounting for the costs of
adaptation, or isolating measures of direct weather damages (hence indirectly of climate damages).

The literature on climate damages has grown rapidly over the last decades, crossing from Ricardian
approaches into global dynamic general equilibrium models and fine scale panel studies of context-specific
dose-response functions.3 Our paper stands out in this literature by the unusual precision of the data
directly measured at the agent-level, and within a repeated panel format. While studies of adaptation to
climate change have previously relied on farm-level data, for example Aragón et al. (2021) for smallholder
farms in Peru, our repeated structure and the depth of the data collected is to the best of our knowledge
unprecedented. In the context of developed economies, most research has relied on aggregated data for which
yields or profits are available (Schlenker and Roberts (2009) for example). In France, previous research has
been conducted at the department-level and over a longer period of time by Gammans et al. (2017), but has
focused on yields specifically, while research that has been done at the establishment-level has focused on a
small subset of farms (Bareille and Chakir (2023)). We build on these papers by distinguishing costs and
revenue adaptive responses.

Our paper also builds on the subset of the literature which has approached adaptation with a keen
focus on the definition of farmers’ climate beliefs. Such papers have highlighted how the nature of agents’
beliefs about the climate process structures what can be interpreted as adaptive behaviour to changes in
climate. Burke and Emerick (2016) illustrate clearly how the definition of beliefs drives our understanding
of adaptation. Prior to Burke and Emerick (2016), Kelly et al. (2005) defined two sets of costs related to
environmental changes: transition costs and equilibrium costs. The first ones being incurred as the economy
moves along the transition path towards a new equilibrium where the new environmental context is fully taken
into account. Kala (2019) goes further by comparing different learning models for the timing of the monsoon
in India. She makes the point that recovering farmers’ learning behavior can depend on our modeling of the
objective that they maximize. What we measure as the extent of their adaption to changing climate patterns
relies on the behavioral model and the objective function assigned to them. Finally, Shrader (2023) offers
a way to use weather forecasts to disentangle adaptation effects from direct climate damages. Our current
work builds on this. Once controlling for weather realizations, we use forecasts as shocks to the agents’
beliefs that in turn drive the agents’ adaptive actions. Related to this literature, we show that here, not
controlling for weather forecasts induces an upward bias in the measurement of the profit impact of extreme
heat—extreme heat seems less damaging that it really is. We run a distributed lag model that includes all
the forecasts available during the growing season (at all the possible lead values), and hence attempts to
capture as much as possible of the agents’ beliefs formation and adaptive behavior, and their consequences
on farm profit. Running such a regression significantly increases the negative impact of extreme heat on
French farm profits. This is suggestive evidence that as we better control for the indirect consequences of
adaptation on profit, we can better isolate the negative consequences of marginal variation in extreme heat.

Finally, we note that our work relates very closely to two papers which have approached climate
damages without relying on the envelope theorem. The first of them is Guo and Costello (2013), which looks

3See Auffhammer (2018) for a review.
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at the impact of climate change in a forestry context with both discrete and continuous decision making. In
their context, foresters can implement continuous adaptation actions for which envelope conditions apply,
and discrete actions for which they do not. They derive a model where marginal variation in weather can
lead to arbitrarily large impacts on profit by inducing discrete changes in the type of tree species planted
by foresters. Empirically, they find that extensive margin (discrete) adaptive actions can have large profit
responses, but typically induce a net-zero profit response. Similarly, Bareille and Chakir (2023) also rely on
structural methods to disentangle adaptation effects from direct weather effects, but their method requires
a complete enumeration and modeling of adaptation methods, as well as instruments separately identifying
adaptation effects from the weather impacts. Mirroring the discussions in the sufficient statistic literature,
by-passing the envelope theorem is a difficult task which requires a structural setting and implies trading some
assumptions for others. We see our work as shedding additional light on the trade-offs between structural
and envelope-free, and reduced form and envelope-dependent methods.

The rest of the paper proceeds as follows. In section 2, we describe our data sources, and in section 3
we link our production model to the estimating equations used in our empirical strategy. In section 4, we
present the main results on the marginal benefits and costs of adaptation to weather shocks. section 5
examines the effects on profit, laying out a test for sufficient statistics assumptions, and section 6 examines
limits to the adaptation found in the prior section. Finally, section 7 concludes the paper.

2 Empirical Context and Data

2.1 Agriculture in France

We focus on French cereal, oil, and protein crop production for our analysis. These sectors of the agricultural
industry are of interest in a climate change context, as they are known to be clearly sensitive to variations in
weather. They are also less likely to be shielded from variations in weather through the use of greenhouses—
as might be the case with horticulture—and less heavily irrigated than other crops. In France in 2015, only
5.8% of the total used agricultural area was irrigated (Colas-Belcour et al., 2015). This low exposure to
irrigation in the data also reduces potential concerns of endogeneity linking irrigation and local weather, as
discussed in Braun and Schlenker (2023), and also matches recommendations to avoid studying the impact
of weather shocks in areas where irrigation is likely to be subsidized (Schlenker et al., 2005).

French agriculture is mechanized, and farms have seen decades-long increases in their average size (to
reach 69ha in the 2020 agricultural census), and in their yields as discussed in Schauberger et al. (2022).
France also possesses the largest agricultural area within the EU, and is one of the largest cereal exporter in
the world, exporting to other EU member states, Morocco, Algeria, and other countries. As such, exposure
to climate change and the measurement of its potential damages on agricultural production is a key policy
question.

French farms benefit from a moderate climate, but farm production is still sensitive to weather shocks.
There is significant variation in weather due to the frequent arrival of low-pressure areas from the Atlantic
(Canal (2015)). The Mediterranean regions of France also suffer from high temperatures, water stress over
the summer, and heavy localized rainfall.

Seasonal forecasts have been developed for France since the 1990s, but high-quality coupled atmosphere-
ocean models started to be used for seasonal forecasts only in 1999, allowing to move beyond a four-month
lead for the predictions (Canal (2015)). In this paper, we will use hindcasts produced by the European
Center for Medium-Range Weather Forecasts (ECMWF), up to 1994, and will use leads up to five months.
Most of the analysis however will focus on one-month-ahead forecasts. These should hence have been in
the farms’ information set from 1994 onward. Today, different companies offer an access to month-ahead
forecasts throughout the season, and the EU’s Joint Research Center has been providing real-time cereal
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yield predictions based on the Crop Yield Forecasting System with its MARS bulletin since 2007.
Below we show the allocation of land in our sample for the four main crops, accounting together for

about 85% of our sample’s agricultural area.4

Table 1: Crop mix composition

Share Mean Temperature Threshold Reference
Wheat 47.89 10.2 33C Gammans et al, 2017

Corn 15.29 10.5 29C Schlenker and Roberts, 2009
Barley (Winter) 11.38 10.0 33C Gammans et al, 2017

Rapeseed 11.26 10.2 29C Elferjani et al, 2018

Notes. We compute the shares of cropland allocated to each crop in our dataset, and show the four
largest ones. None of the remaining crops account for more than 5% each of the total land considered.
We show the associated average temperature, among farms growing the crop, and a threshold for heat
damages taken from the literature.

This table is indicative of the fact that wheat plays the largest role in the French agricultural system.
Heat thresholds taken from the economic and agronomic literature are shown in order to indicate that wheat
is relatively more heat tolerant than other crops. As such, we expect farms in our sample to be relatively
heat tolerant.

We run regressions similar to the ones of Schlenker and Roberts (2009) to describe the general impact
of weather shocks in French agricultural production, and as visible in our sample. We use a restricted cubic
spline to model the non-linear relation between exposure to temperature and outcomes, include farm fixed
effects, region-specific quadratic time trends. We show the results in subsubsection A.1.4. Output shows a
non-linear relation with temperature, with total output remaining flat and decreasing sharply after 30C°.
Crop yields show heterogeneous relations with temperature, both wheat and colza show no clear relations
with temperature, while corn and sunflower yields decrease sharply at high temperatures.

We further compute unconditional and conditional growing season mean temperature realizations at
the department level, for our period of study. Figure A19 shows splines describing the evolution over time of
these realizations. These are helpful to characterize the average climate in France. On average, temperatures
remain around the 10°C line, with little change over our period of study. On average, below 0°C temperature
are not very negative, and on average extreme heat temperature remain around the 30°C level. As we have
seen above, these extreme heat events for the French context are likely to hurt some crops, but will have
a more ambiguous impact on wheat production. Only extreme heat shocks for the French context would
significantly impact wheat production.

Figure A6 in the annex further shows that while there is more dispersion across French department
in extreme heat events, the general dispersion of average conditional temperatures remains moderate. We
also provide maps showing the geographic dispersion in growing and heating degree days in France over our
time period in the annex.

We end this section with a discussion of two institutional features of interest for our study. The
first one is that of agricultural subsidies. Agricultural policy has been centralized at the European Union
since the late 1960s under the umbrella of the Common Agricultural Policy (CAP), although more recent
iterations of the CAP have allowed for some flexibility in its country-level implementation. For our period of

4We note that the thresholds used for crop-specific tolerance are only indicative. Tolerance to heat varies across the growing
stages of each crop, and also relate among else to drought conditions. We take these as only indicative that wheat is more
heat tolerant than other crops, and is likely to be less responsive to extreme heat events observed for France in our sample.
References are Gammans et al. (2017), Schlenker and Roberts (2009), Elferjani and Soolanayakanahally (2018).
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interest, the main types of subsidies accessible through the CAP to row crop farmers will be in the form of
subsidies distributed per hectares of sown and harvested land. These should hence be relatively insensitive
to the heat forecasts on which we focus. The second institutional element is that of agricultural insurance.
In France, the main insurance scheme is one of harvest coverage—where extreme weather events leading to
substantial losses in harvest lead to compensation. We note however that in 2023, the French government
indicated that only 17% of the total agricultural area in France was insured.5 This is a stark difference with
the US context, where insurance subsidies constitute one of the main schemes for agricultural intervention.
To account for both these features, we will use two profit variables throughout the paper. The first one will
be a measure of value added, roughly accounting for the value of production minus its costs. The second
one is a more general measure of establishment profits which accounts for expenses in insurance, insurance
compensation, as well as subsidies received during the season. The comparison of these two results should
help confirm that our results are not driven by any of these two institutional features. We give more precise
definitions of all our variables in subsection B.1.

2.2 Agricultural Data

2.2.1 Farm Data

We use the European Union’s Farm Accountancy Data Network (FADN) for France, which is a subset of an
EU-wide annual panel of farms. Started in 1968 in France, it currently corresponds to a sample of around
7,000 farms meant to be statistically representative of French commercial farming. 6

The FADN contains precise accounting data on the farm’s activities. For our analysis, we focus on
farms mainly producing cereal and oil crops. Specifically, we use a sub-sample of farms whose sales in
cereals, sunflower and rapeseed account for at least 50% of their total yearly sales. Soybean and protein
crops correspond to a small fraction of large field crops in France, which justifies our focus on cereals and
oil crops. This has the main consequence of excluding animal, as well as vegetable, fruit and wine farming.

For these selected farms, the FADN indicates the total and crop-specific sales, total farm-level spending
on inputs per type, and different values for profit. It also indicates crop-specific production values in quantity,
the amount of production sold (in quantity and value), the total amount sold per crop (accounting for
potential storage), and the amount of land allocated to each crop. We describe how the different accounting
variables are constructed in the appendix section B.1.

We geocode the farms at the department level, and match them with department-level weather data.
While farms locations at the commune-level are available from 2000 onward, the forecast data is too coarse
for such granularity, and we choose to measure realized and forecasted weather at a similar level. We also
note that there are 101 departments in France, which make for slightly larger entities than US counties. We
perform a robustness analysis where realized weather is computed at the commune-level and forecasts kept
at the department-one over the 2000-2018 period.

2.2.2 Input Price Data

Our input price data comes from two sources. From the Land Market Value survey (Valeur Venale des
Terres) for land prices, and from the Observational Survey of Intermediate Consumption Costs Necessary to

5See https://agriculture.gouv.fr/animation-la-reforme-de-lassurance-recolte
6The FADN is not representative of all agriculture, but only of commercial farming. The definition of a commercial farm

changed in 2010, but this only led to the changing of the the rules for choosing replacements for the farms leaving the sample,
and not to an overhaul of the sample population itself. Before 2010, a commercial farm was defined as a farm with a unique
manager, which sells more than half of their production, and whose manager’s working hours correspond to at least 75% of
their total annual work hours. Finally, farms with less than 5ha of land were removed from the targeted population if they
were not specialized. In 2000, there were 380,000 such farms recorded in the Agricultural Census out of 663,800, but together
they accounted for 95% of the country’s total agricultural production. From 2010 onward, the working hours requirement was
removed, and the 5ha threshold was replaced by a requirement that farms have a production capacity of at least e25,000.
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Farmers (EPCIA) for seeds, fertilizers and pesticides. EPCIA is mandated by the European Commission,
and is used to build Laspeyres price indices for agricultural intermediary goods in France. The EPCIA
records price series for a representative amount of goods within each input category.7 Each series is defined
according to the nature of the product sold, to its sales condition and the firm that sells it.8 We localise
the sale points at the department level, and match them with department-level weather data. We also use
the Laspeyres price indices derived by the INSEE from the EPCIA in order to deflate the FADN farm-level
input bills for seeds, fertilizers and pesticides. Specifically we use the Ipampa price index series, from 1994 to
2020. Figure A14 compares input price indices from Ipampa with a time series for nitrogen-based fertilizers
producers prices from Fred, and shows the strong correlations in fluctuations. This should confirm that the
indices are efficient at tracking variations in prices. Irrigation expenses is only deflated using a regular CPI
index, as we do not have a water-specific price index.

2.2.3 Land Price Data

Land price data comes from the Land Market Value yearly and department-level survey (Valeur Venale des
Terres), which is fielded every year by the statistical services of the French departmental administration
for agriculture and forestry. These are based on data provided by the public company in charge of land
management (SAFER), which authorizes agricultural land purchases and consolidations when transactions
surpass a given threshold. This data is then complemented by data provided by local notaries, and several
local administrations. We use this data for 1994-2015. The data was digitized from scanned data catalogues
for the first years of the series.

2.2.4 Plot Level Data

Plot level data comes from the survey on Agricultural Practices for field crops (Pratiques Cultures sur les
Grandes Cultures). We use the surveys fielded in years 1994, 2001 and 2006. Plots surveyed are selected
among the farms that benefit from the European Union’s Common Agricultural Policy. The survey focuses
on land plots defined as the set of contiguous land for which the same crop is cultivated, with homogeneous
agricultural practices (fertilizer and pesticide use for example). For each crop, the survey selects the minimum
number of regions covering at least 95% of that crop’s production, and within each region the minimum set
of departments accounting for at least 90% of the region’s production. Within departments, the survey
selects farms with at least .1 hectare cultivated, and less than 200ha. A unique plot is selected within each
farm. For the waves that we study, around 20,000 plots are sampled each time. Importantly, this dataset is
a repeated cross-section and does not allow for within plot or farm analysis.

2.3 Climate Data

2.3.1 Weather Data

Our realized climate data comes from the European Centre for Medium-Range Weather Forecasts (ECMWF)’s
ERA5 reanalysis product. ERA5 gives hourly estimates of climate data, out of which we use precipitation
and temperature (temperature 2m above the surface of the Earth). ERA5 combines observational weather
data with model-based data into a 0.25×0.25 gridded dataset.

We extract that data at the French department level, cropping the grid with department shapes,
and averaging the data using simple area weights. Using the time separability assumption common in the
literature on climate impacts on agriculture, we aggregate the hourly data into growing-season observations.
Temperature exposure is measured through growing degree days (GDD) and heating degree days (HDD).

7The relative number of goods sampled within a category is proportional to that category’s relative sales.
8The spread of one good’s series across firms is proportional to the firms’ market share for the sale of that specific good.
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GDDs are computed over the [4°, 30°] degree interval, and HDDs sum the realized temperature above 30°C.
Thus, GDDs measure moderate temperature exposure while HDDs measure extreme heat exposure. In order
to match the forecast dataset, we only use 4 daily measurements of temperature to compute the GDDs and
HDDs, specifically at midnight, 6h, 12h and 18h. The GDD and HDD integrals are computed over these
sets of four observations a day, and later divided by 4 in order to obtain variables which are equivalent in
scale to actual growing and heating degree days computed using 24 observations per day. Growing-season
precipitation is measured by summing precipitation over each day.9

Our relevant unit of observation being the farm, and farms being mostly multi-product production
units—we aim at taking into account this heterogeneity when building our climate variables. In Table A1,
we aggregate crops into three categories, and show the conditional probability that farms grow different crop
categories. On average, most farms growing industrial crops like sugar beets, flax or hops will also grow
cereals, and the same stands for oil and protein crops like sunflower, rapeseed or soy. In Figure A13, we show
the pair-by-pair probabilities of joint production. This shows that French farms are inherently multi-product
economic entities, likely maximizing their profits across product lines, rather than product-by-product. As
such, our weather variables have to account for the entire set of weather shocks that might impact their
production schedule. To account for this, we take an expansive definition of the growing season spanning
October of the previous year, to July of the current. This also matches the winter wheat growing season,
which is our main crop here.10 We show in Figure A9 and Figure A10 the cross-sectional and cross-temporal
variations in growing seasons for resp. wheat and corn in France.

The same argument justifies adopting a more expansive definition of heating degree days. Gammans
et al. (2017) study the impacts of climate change on wheat and barley yields at the French department
level over 1950-2014, and find that heat shocks happening over the spring and summer seasons can cause
significant yield losses when they pass the 33°C threshold. Their dose-response function remains however
relatively flat before the 33°C mark. Results by Schlenker and Roberts (2009) however show that corn, which
accounts for 15% of the surface we study, suffers from heat from the 29°C mark onwards. We adopt 30°C as
a threshold to account for this heterogeneity in crop responses, and later show robustness tests using a 28°C
threshold for growing and heating degree days.

2.3.2 Seasonal Weather Forecasts

The forecast data is taken from ECMWF’s SEAS5 seasonal forecasting system. Specifically, we use SEAS5
system 8 data originating from Météo France. Forecast are produced on the first of each month for the
following 5,160 hours (215 days or roughly 7 months).11 For temperature, forecasts are produced for four
moments of the day located at 6h intervals from each other. They hence give an instantaneous point
prediction of temperature. For rainfall, forecasts give the accumulation of rainfall every 24h. As such, the
rainfall forecasts available for the second day of January will be the following: a 24h ahead forecast provided
on the 1st of January, a 32 days ahead forecast produced on the first day of December, and so on until the
lead value exce eds 5,160 hours. Temperature forecasts work in a similar way, but are just produced with
more granular time steps.

The main issue for our purpose is that given that forecasts are produced every first of the month,
different days within a month will not be provided a forecast with the same lead—here the 10th and 15th
forecasts of a month will always be produced on the same day, and the 15th is likely to accumulate more
uncertainty. We would ideally like to build the forecast-equivalents of our growing-season aggregates for
realized weather, just for different forecast lead times. For example, the rainfall forecast for the growing

9We perform robustness tests where we use realized growing and heating degree day measures computed using the full set
of EAR5 hourly data, and the set of four hours a day for the forecasts.

10Gammans et al. (2017) also define the winter wheat growing season for France as spanning October to July.
11ECMWF provides an ensemble of 25 forecasts, which we average.
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season, with a constant one-month lead throughout the season (or the equivalent of the farmer’s knowledge
about rainfall one month in advance throughout the growing season).

We approximate this by bundling together forecasts produced one calendar month ago (what we refer
to as a one-month lead for the rest of the paper), produced two calendar months ago, up to five months ago.
As such, the forecasts that we aggregate into growing season observations are not homogeneous in terms of
lead value, but are the closest equivalent of it that we can observe. Practically, for each year-day-hour (or
year-day for precipitation), we rank the forecasts by their lead time and use the first-ranked forecasts for
our one-month ahead measure, our second-ranked ones for the two-months ahead, and so on. A one month
ahead aggregate for a given month will then aggregate over forecasts for the 2nd day of the month which
amount to one-day ahead forecasts, and for the last day of the month made on average 30 days in advance.
A better description for them might be that one-month ahead forecasts give forecasts issued between zero
and one month ahead in advance, two-months ahead between one and two months ahead, and so on.

Similarly to the weather realization data, we aggregate the gridded forecast data into department-level
observations, using area weights.

2.3.3 Forecast Accuracy

We show in Figure A1 and Figure A2 the distribution of the difference between realized and forecast weather.
We note that for growing degree days, the distribution is centered near zero, but with a small, negative bias.
There is a long left tail to the GDD errors. We trim the estimation sample to drop errors less than -500
(removing 120 observations in total) to avoid the effect of outliers.12 The distribution of HDD forecasts is
also tightly centered around 0, with some evidence of positive skewness, indicating that the forecast was
more likely to come in too low rather than too high. Rainfall also shows an upward bias in the forecasts,
but with distributions centered close to zero and largely symmetric.

The relatively narrow distribution indicates that forecasts do contain meaningful information about
future weather. This provides statistical corroboration to the discussion in subsection 2.1 that forecasts
contain information that should shift farmers’ beliefs about weather.13 This conclusion is further reinforced
by Figure A4 and Figure A5, which show calibration plots for the forecasts of GDDs and HDDs respectively.
For GDDs, the figures show that the forecasts are well calibrated at both a 1 and 2-month horizon (further
horizons show similar patterns). Forecasts and realizations are highly correlated, and the scatterplot shows
that forecast and realizations fall close to the 45°line. Compared to GDDs, forecasted HDDs are more likely
to under-estimate the realized HDD.

We construct heating and growing degree days from 4-times-daily observations of realized and fore-
casted temperature. The highest and lowest temperatures during the day might occur between observations,
and, therefore, our calculation could understate the realized extreme temperatures actually faced by farms.
The forecasts, however, are only available at this temporal frequency, so using them to calculate degree days
accurately captures the granularity of information available to farmers.

3 Empirical Strategy

To identify the cost and revenue effects of farms’ responses to expected weather shocks, we use an estimat-
ing equation that regresses total costs, or total revenue on both realizations and forecasts of weather. In

12Our results are robust to removing observations with an absolute error value over 500. Results are not shown in the paper,
but available upon request.

13As discussed in subsection 2.1, seasonal forecasts, and forecasts up to four months ahead, have been available in France
since the 1990s. See Canal (2015) for a discussion of the evolution of forecasting methods in France.
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particular, we use the following estimating equation.

yjt =βw
1 GDDd(j)t + βw

2 HDDd(j)t + βf
1 FGDDd(j)t + βf

2 FHDDd(j)t+ (1)

g(Pd(j)t) + g2(FPd(j)t) + γj + ηt + ζ1r(j)t+ ζ2r(j)t
2 + εjt

The outcome variable is either costs or revenues for farm j in growing season t. In later results, we also
explore effects with different outcomes including farm inputs, planting decisions, and profits. The main right-
hand-side variables are realizations of temperature (GDD and HDD) and forecasts of temperature (FGDD
and FHDD) experienced by farms located in department d during the growing season. Given that weather
and forecasts vary at the department and year level, we use two-way standard errors at the department and
year level.

We focus on the marginal effects of forecasts, and do so for two reasons. First, conditional on weather
realizations, variation in forecasts should cleanly identify changes in information available to farmers. This
information change, in turn, should affect production decisions. In that sense, forecasts are a way to avoid the
attenuation bias caused by recovering cost and revenue effects off weather realizations–which, to a minimum,
will contain both predicted and unpredicted weather. When looking at outcomes such as revenue, rather
than farm decisions, coefficients recovered off weather realizations will further capture the joint effect of
farmer action and weather realization. Controlling for realizations, and using forecast variation isolates
farmer decisions. Second, if the farmer faces adjustment costs when choosing actions, then they have an
incentive to choose actions prior to the arrival of weather. In such a case, forecasts provide more powerful
identification of the effect of temperature on farmer actions than looking at realizations of temperature. In a
farm setting, adjustment costs are likely high given that many actions need to be taken prior to the growing
season (e.g., the choice of which crops to plant, total cropped area) or prior to weather arrival during the
growing season (e.g., fertilizer application, defense of crops against freezing). We focus, in the initial results,
on one-month-ahead forecasts. In cases with convex adjustment costs, marginal value of information falls
as forecast horizon increases. Thus, short-horizon forecasts should again improve power to detect effects. In
additional results, we examine forecasts with longer horizons.

The estimating equation also includes controls for the level and square of realized and forecasted
precipitation over the growing season to account for effects of precipitation on farm outcomes. We write
these as g(Pd(j)t)+g2(FPd(j)t). We include region specific time trends in the form of ζ1r(j)t and ζ2r(j)t

2. These
account for potential sub-national trends that would correlate with weather and our outcomes of interest.14

Finally, farm fixed effects, γj , and year fixed effects, ηt, mean that effects are identified from within-farm
variation in weather over time, while accounting for national time series patterns in both weather and
agricultural costs or revenues, as well as region-level quadratic trends. The identification assumption is that
the remaining error term, εjt is uncorrelated with the temperature forecast variables. The control set is
similar to prior work on the effects of climate on agriculture, with one important difference: we are able
to use farm fixed effects rather than geographic area fixed effects (e.g., many studies in the U.S. include
county fixed effects). This more granular cross-sectional control should alleviate concerns about confounding
farm-level characteristics like geographic features that determine crop suitability and weather patterns.

14Recent work has highlighted the endogeneity of agricultural technical change to the heterogeneous exposure of crops to
heat, with crops more exposed being a relatively higher focus of innovation. See Moscona and Sastry (2022). We also run
regressions without the department-specific trends, and find very similar results. This structure of time trends follows from
Schlenker and Roberts (2009), albeit we also include year fixed effects to account for potentially non-linear France-level shocks.
Year fixed effects seem particularly relevant in the European context, with an integrated agricultural market and likely spatially
correlated heat shocks across countries which will impact overall demand.
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4 Results: Marginal Costs and Benefits of Adaptation

4.1 Cost and Revenue Effects

We first show the effect of forecasted moderate and extreme temperature on farm costs and revenues, con-
trolling for realizations of temperature. Table 2 displays the results. The outcomes are revenues (measured
by total sales) and a measure of the costs of production. The measure of costs is broad and includes the cost
for intermediate inputs, social contributions to workers, personnel expenses, taxes, and insurance.15 This
broad measure is less likely to miss potential adaptation costs.

GDDs, as the name implies, help crops grow and can thus be interpreted as positive productivity
shocks. HDDs, in contrast, are temperatures so extreme that they cause crop losses. We expect that
forecasts of GDDs are useful for taking advantage of better growing conditions, while forecasts of extreme
heat are useful to either cut production costs, to increase input usage to compensate for adverse conditions, to
better target input usage, or to modify decisions such as the timing of harvest or one’s crop mix composition.
In a simple model where farms optimize profit, and local adverse weather (either lower GDD or higher HDD)
corresponds to a negative TFP shock—but where output prices are not responsive to local conditions—we
would expect forecasts of worse conditions to lead to a reduction in the scale of production, leading in turn
to reduced revenues and costs. The expected negative TFP shock shifts the marginal cost curve upwards,
and under decreasing returns to scale, induces farms to reduce their scale of production until it matches the
market price again. On the other hand, changes in the timing of harvest could allow for a positive revenue
response without substantial changes in costs.

Table 2 shows that revenues respond positively to forecasted GDDs and HDDs. In contrast, costs
respond positively to forecasted GDDs but exhibit an insignificant response to forecasted HDDs. And, in
comparison to the forecasted HDD effect on sales, the response is quantitatively small. The point estimates of
the effects of realized GDDs and HDDs are generally in keeping with our assumptions that higher GDDs are
productivity improving for firms while higher HDDs are generally productivity reducing. The interpretation
of these coefficients, however, is not straightforward. They mix direct effects of realized weather with the
effect of ex-post adaptation actions. In our sample, these effects are also not statistically significant. Given
that the central goal of the paper is to identify and quantify costs of adaptation, we do not give further
attention to these coefficients.

15We perform a test and run the regressions using only expenses for intermediate inputs, as a check for potential mismea-
surement, and find similar results. Results are available upon request. See subsection B.1 for the definition of intermediary
inputs.
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Table 2: Cost and Revenue Reactions to Forecasts (1 month lead)

Dependent Variables: Revenue Costs
Model: (1) (2)

Variables
GDD 5.103 1.213

(11.84) (7.809)
GDD (F) 37.39 30.79∗∗

(34.66) (14.48)
HDD -158.3 -191.9

(332.2) (156.9)
HDD (F) 1,192.2∗∗∗ -56.71

(402.7) (178.5)

Mean 155,386.2 123,249.1
Unique Farms 2,603 2,603

Fixed-effects
Farm Yes Yes
Year Yes Yes

Fit statistics
Observations 18,917 18,917
R2 0.88715 0.93666

Notes: Estimates are based on Equation 1, using the baseline sample. Realized and forecasted rainfall in levels and squares, as
well as quadratic region-specific time trends, are included as controls in addition to the indicated fixed effects. Observations are
weighted using the sample weights provided in the FADN. Two-way department-by-year standard-errors in parentheses. Stars
indicate estimate is significantly different from zero: *p < .10, **p < .05, ***p < .01.

Looking first at the effect of forecasted GDDs, one can see that the effects on costs and sales are
of comparable magnitude. This result suggests that for moderate temperatures, farmers are taking costly
actions to arrive at an increase in revenue. This is in line with the hypothesis laid out above that forecasts of
better conditions (higher GDDs) lead farmers to expand the scale of their production. The effects on both
revenues and costs are small relative to the mean for a one-unit increase in GDDs. The standard deviation
of forecasted GDDs is about 240, so a typical change in GDDs will lead to an about 6% change in sales and
costs.

The effect of forecasted HDDs shows a different pattern. Sales increase while costs do not show
substantial or significant responses. An increase by one degree-day in HDD forecasted one month in advance
leads to an increase in sales of e1,192. Given typical sales per farm of about e150, 000 and a standard
deviation of forecasted HDD of just over 1 (see Table A2), this coefficient indicates that a typical change in
forecasted HDD causes sales to change by about .8%, on average. In contrast, forecasts of extreme heat have
no statistically significant effect on production costs. And from comparing the revenue and cost effects, one
can see that the effect on costs is also practically small in magnitude. The results indicate that there are
large benefits to adaptation and near-zero costs of adaptation, on average, for these farmers.16

16Table A7 compares results to one-month and two-months ahead forecasts. Figure A15 compares the results for all available
leads.
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Finally, we look at a distributed lag model which includes both weather realizations and the entire
set of forecasts with a lead from one through five months ahead. That is, we run the following regression on
our outcome measures:

yjt =βw
1 GDDd(j)t + βw

2 HDDd(j)t +

5∑
ℓ=1

(
βf
1,ℓFGDDℓ

d(j)t + βf
2,ℓFHDDℓ

d(j)t + g2,ℓ(FP ℓ
d(j)t)

)
+ (2)

g(Pd(j)t) + ζ1d(j)t+ ζ2d(j)t
2 + γj + ηt + εjt

where all variables are the same as in Equation 1 except we have added forecasts for each horizon, as indicated
by the variables FGDDℓ, FHDDℓ and FP ℓ

d(j)t. This regression identifies the precise timing of information
arrival. When running regressions with a unique set of forecasts, these will capture the information received
at other leads, via their non-controlled-for correlation with these other forecasts. Essentially, not including all
the leads available creates a form of omitted variable bias where the included forecast captures a composite
of the effects of all forecast horizons, with the composite effect being determined by the autocorrelation of
forecasts across horizons. As long as we control for realized weather, this omitted variable will not be an
issue for identifying benefits or costs of adaptation, because the interpretation of the forecast coefficients is
still that it causes changes in the agent’s action. However, it is useful to include all the possible forecasts
leads in order to understand which forecast lead is most useful to farmers—in the sense that it generates the
largest response.17 It also puts the forecast and realization effects on similar footing in the sense that both
are then identified by shocks: surprising realizations in the case of the realized temperature and news shocks
in the case of all forecasts for horizons less than five months ahead.

Figure 1 plots the coefficients associated with heating degree days from estimating two different
versions of Equation 2. In particular, the figure shows βf

ℓ for ℓ ∈ [1, 4] and shows βw for the lead value of
0 for regressions with costs and sales on the left hand side. We exclude the coefficients for lead 5, given
that these are less cleanly identified, accounting for all the information received more than four months in
advance.18

17In a model with risk averse farmers, a specific forecast lead might generate a larger response, either because forecasts
produced at that lead value are more precise (in general forecasts become more precise as they come closer to the predicted
event), or because the timing of the favored adaptation responses matches its lead value the most. Figure A1 shows that forecast
errors do not change significantly across lead values; at least when aggregated into our growing season variables. As such, we
can expect that here, differences across lead values are mainly driven by questions of timing.

18As discussed in Canal (2015), forecasts were only available up to four months in advance in the 1990s in France, and our
five-month ahead hindcast is hence less likely to correspond to information available to farmers at the time.
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Figure 1: Costs and Revenue Reactions

We see that the the effect on sales associated with a one-month-ahead forecast is statistically significant
and of a similar magnitude to the effect found in Table 2. The cost effect of a one-month-ahead forecast of
HDDs remains centered around zero. Revenue responses are not statistically significant at the 5% level for
horizons longer than one month, but the point estimates indicate that information close to the shock allows
for revenue-enhancing adaptation while information farther from the shock leads to a decrease in revenues.
Costs are near zero for all horizons aside from three months ahead. The fact that costs do not move more
strongly at short horizons than at longer horizons is inconsistent with adjustment costs driving the results
that we find (Downey et al., 2023). The significant three-month-ahead forecast could indicate that there are
adjustments that are uniquely available at a quarterly frequency that allow farms to reduce the scale of their
operation in anticipation of adverse weather conditions.

We also observe that the coefficients associated with realizations become more negative and almost
statistically significant at the 5% level. This might mean that including more leads allows for more powerful
estimation of the direct effect of extreme heat on agricultural revenues and costs.

The large effect on revenues and small effect on costs naturally raises a question: how are farmers
achieving an improvement in revenues with little to no change in costs? Below, we explore farm-level behavior
that does and does not respond to forecasts to shed light on this question. We also test for—and rule out—a
variety of measurement and identification arguments that could explain the results.

4.2 Ruling Out Explanations Due to Measurement Error, Offsetting Effects,
Specification Choices, Identification of News, or Adjustment Costs

Before investigating the mechanisms by which firms might be adapting to temperature, we first rule out
some alternative explanations of the results.

A first issue is that input quantities and prices responses might offset each other. On this, we show

15



separate regressions: one for the quantity of inputs and one for their prices.19 The table corresponding to
the figure below is in Table A10. We use input prices as recorded in an agricultural input price survey used
to build nationally representative input-specific Laspeyres indices. The precision of this survey is useful, in
that we can run the regressions including store and product fixed effects in addition to year fixed effects.
We show the results pooling together all categories of input prices here, and outline the price responses per
input category in Table A15.20 We also show results for three of the main inputs, and the ones we consider
the easiest to adapt to one-month ahead information shocks: irrigation, fertilizers and pesticides. We show
in Table A13 results for a larger set of inputs, and in Figure A16 and Figure A17.

Figure 2: Prices and Quantities for Outputs and Inputs

We further decompose land and labor responses per sub-categories of land ownership and labor con-
tracts.21 Store prices are unresponsive to HDD forecasts, as are inputs. In Table A13, we see that none of
land, labor, fertilizers, phytosanitary products, seeds and irrigation respond to forecasted HDDs. Labor does
respond to forecasted GDDs, matching the increase in total costs of production see in Table 2. Decomposing
land responses in Figure A16, we see that this does not seem to be driven by an aggregation of different
land categories with heterogeneous adjustment costs. Both the response of rented land with short rental
contracts, and of owned and used land are non-statistically significant. Additionally, fallow land does not
respond as well, whereas we could have considered it as a potential source of extensive margin adaptation.
When decomposing labor responses in Figure A17, we note that the two most flexible types of labor respond

19Fertilizers and phytosanitary products are measured as deflated input bills, using France-level input-specific Laspeyres
price indices which translate the deflated input bills into 2020 euros. See subsection B.1 for detailed definitions of the different
variables. Because we do not observe price indices at the farm-level, we are unable to account for variation across farms in
input qualities, and variations in input qualities potentially induced by weather shocks. Input upgrading in response to weather
shocks is to our knowledge a question which has never been studied, although research in firm dynamics has shown that firms
can respond to local shocks by changing the quality of inputs they use. See Verhoogen (2023) for a discussion.

20Table A16 gives the two-months ahead results.
21Table A14 shows similar results for two-month ahead forecasts.
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negatively to expected hot weather, with non-regular salaried workers dropping in a statistically significant
way by about 2.83 hours per additional forecasted HDD. This response remains small, given that labor is
measured in total hours of work per year, and that the standard deviation in forecasted HDD is of one.

Overall, these results confirm that the non-responsiveness of farm-level total costs to forecasted HDDs
does not stem from countervailing price and quantity effects, but that neither respond strongly to forecasted
heat shocks. Here the only responsive input is the labor of non-regular farm workers.

A second issue is that the total costs variable could be subject to measurement error, leading to
attenuation of the effect of forecasted HDDs. Total costs are measured as an aggregated input bill at the
farm level, and follow directly from the precise accounting exercise done to collect FADN data. Nonetheless,
measurement error could be possible for total costs. We expect that the two inputs which are the most likely
to be mis-measured are labor and land. In order to circumvent this issue, we show the response of total labor
and land in volume (resp. in hours, and hectares) in Table A13. Both are not responsive to heat shock. We
note that our measure of labor includes family labor and unpaid labor, and as such should account for the
potential opportunity cost of unpaid labor that could be allocated to non-farm work. For land, we use a
measure of total utilized agricultural area, which is an expansive measure and accounts for both land that
is owned, and land that is rented. We also note that input bills, more narrowly defined, are also less likely
to be mis-measured than total costs. The results shown above hence also act as test for the possibility of
measurement errors driving our zero cost response.

Next, we focus on similar regressions for the quantity of output (simply the sum of all produced
quantities), storage (sum of all stored quantities), and an output price index, also outlined in Table A10.2223

We first note that while aggregate output does not respond positively to forecasted GDDs, the crop-specific
decompositions performed in Table A17 show both wheat, corn and colza benefit from them, even though the
coefficients are noisy. As expected, realized HDDs hurt production, here a one standard deviation increase
in realized HDDs (3.202) leads to a decrease in output by 1.5ppt. In comparison, and using department-level
time series of yields, Gammans et al. (2017) find that an additional one-day exposure to temperature above
32°C will decrease wheat production by about 2.5ppt. The comparison between these two results is not
directly straightforward. Our heating degree day cut-off is at 30°C, in order to account for the impacts
such temperature can already have on corn. We also account for weather realizations and forecasts over the
entire possible growing season, allowing for farmers to both switch their crop mix composition (and hence the
relative density of their lands exposed to weather or winter growing seasons), and switch their growing season
at the crop level (slightly moving up or down their wheat or corn specific growing seasons for example). We
also note that they focus on weather accrued during the warm part of the wheat growing season–although
warm weather accrued over the total growing season, and the warm months should be comparable quantities
in the French context. As such, it makes sense that they find a larger effect for unavoidable hotter weather,
while we find that farmers face lower consequences form their endowed weather which might not necessarily
be the effective weather they end up facing. Forecasted HDDs also significantly impact output quantity. A
one unit increase in forecasted HDD raises output by .9% of total output. These results provide reassurance
that the revenue and cost effects we identify are indeed associated with adaptive action rather than a change
in input or output prices.

We also investigate effects on storage. The positive sales response might be due to an increase in
volumes sold coming either from increases in production, in production sold (a decrease in current period
storage), the use of previously stored output, or the increase in output prices holding volumes sold constant.
We find that storage does not respond in a significant way to forecasted HDDs.

22We show in Table A17 the crop-specific responses of output quantity to temperature realizations and forecasts.
23The output price index used in this regression corresponds to a weighted average of crop-farm level output prices as observed

in the data, using relative land shares as weights. subsection B.1 gives a formal definition of the different variables.
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Finally, we examine the robustness of the results to changes in the specification of the estimating
equation including the addition of lags of realized weather or removing department-specific time trends. We
vary the cutoffs used to define a GDD versus an HDD and add a measure of freezing degree days. We also
use a disaggregated measure of realized weather, measured at the village level, combined with the same
department-level measure of forecasts. In this case, realized weather is also computed using the entire range
of hourly realizations, and not only four observations per day. And we investigate heterogeneity in the
response to forecasts across farms. In all cases, we find results that are in line with the baseline estimates.
These robustness checks are reported in Appendix D. When looking at profit results below, we investigate
the variation of our results along the sign and magnitude of the forecast error.24

4.3 What Is Driving the Results? Differences in Weather Variation and Actions

So what is causing the similar response of revenues and costs to GDDs, on the one hand, and the substantially
different response to HDDs on the other hand? This section describes three parts of the answer. First, we
show that the variation in temperatures underlying GDDs and HDDs differs. GDDs are much more likely to
be associated with small or marginal changes in temperature. HDDs, in contrast, are much more common
when there are large, non-marginal changes in temperature. These different changes in temperature, in turn,
drive different behaviors by farmers. In response to GDDs, farmers take more continuous actions, while they
take action in response to HDDs that are lumpier or which entail opportunity costs rather than changes in
costly inputs.

To demonstrate these effects, we first decompose the variation in temperature in our data into marginal
and non-marginal variation for our two temperature variables (GDDs and HDDs). Our decomposition is
done according to the following procedure: first, we compute a thirty-year average of hourly temperature
realizations at the department level.25 We then compute the average temperature value for each hour-day-
month tuple. Using those same data, we also build the temperature standard deviation for each hour-day-
month tuple. For each hourly, department-level temperature realization in 1994-2018, we then check whether
that realization deviates by more than 1.96 standard deviation from the mean. If it does, we classify the
realization as non-marginal, if it does not, we classify it as marginal.

In our sample, 85% of the HDDs are classified as non-marginal according to this definition, while only
13% of GDDs are classified as non-marginal.26

We next run our main specification but on realized and forecasted temperature variables decomposed
into marginal and non-marginal (denoted in the table by “m” and “nm” respectively). The results are shown
in Table A18. The main take-away from the results is that non-marginal HDD forecasts induce a positive
sales response, while the rarer, marginal HDD forecasts actually lead to a reduction sales—in line with the
hypothesis that higher HDDs should cause a reduction in scale for farmers. This is also in line with the
adaptation strategies we outline below, which correspond to changes in the timing of the growing season,
and in crop mix composition. Both are unlikely to respond to marginal changes in hot weather, and should
only be undertaken as very noticeable shocks are expected. Hence, marginal heat shocks for which our main
adaptation strategies are less likely, should come with negative revenue effects. We note, however, that the
support for marginal HDD is small which explains that on average the effect of an additional forecasted
HDD remains strongly positive and significant.

Second, we note that costs also respond to non-marginal GDD forecasts, while they do not respond in
a significant way to marginal GDDs. This result is likely well identified given the significant marginal com-
ponent of GDDs in our data. We see however that the revenue and cost responses to marginal GDDs overlap,

24The annex also contains these same results for cost and revenues as outcomes.
25That is, we aggregate the gridded ERA5 data for 1963-1993 at the department level using area-weights.
26See Table A20 for details.
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and that the responses to marginal and non-marginal forecasted GDDs cannot be strongly distinguished,
statistically, in the data.

The difference in variation underlying forecasted GDDs and HDDs suggests that farmers might also
be taking different types of actions in response to forecasts of these different measures. We have previously
highlighted in Table A10 how forecasted GDDs induce a positive input response in the form of higher input
usage, while forecasted HDDs show null results across the input schedule. We now also utilize data on dates
of ploughing, initial irrigation, harvest, and sowing. These data are gathered at the field level from the survey
of agricultural practices (PKGC). The survey is a repeated cross-section, and as such we are not able to
include farm fixed effects. We only include department fixed effects (the smallest geographic identity to which
we can attach the fields, roughly corresponding to US counties). Given the coarser sampling procedure used
to build this data, we cluster the standard errors at the region and year levels. Otherwise, the specification
is the same as the baseline regression in Equation 1.

Table 3: Timing Response to Forecasts (Wheat - 1 month lead)

Dependent Variables: Ploughing First Irrigation Sowing Harvest
Model: (1) (2) (3) (4)

Variables
GDD 0.0203 0.0787 0.0213 4.7× 10−5

(0.0244) (0.1107) (0.0124) (0.0028)
GDD (F) 0.0702 1.566∗∗∗ 0.1377 0.0094

(0.0781) (0.1326) (0.0486) (0.0180)
HDD 0.9084 -3.849∗∗∗ 0.4733 -0.1368

(0.3785) (0.2796) (0.3078) (0.0469)
HDD (F) -1.171∗ 2.121∗ -0.9083 0.3606

(0.2762) (0.6573) (0.5233) (0.2112)

Mean 337.5 532.1 378.6 594.3

Fixed-effects
Department Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 7,313 214 9,987 9,974
R2 0.37425 0.54312 0.23870 0.52929

Notes: Two-way region-by-year standard-errors in parentheses. Stars indicate estimate is significantly different from zero:
*p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels and squares are included as controls, as well as
quadratic region-specific time trends.

We focus specifically on examining timing of production decisions. The timing of different procedures
is likely to react to forecasted weather, and could have large effects on the output for a farm. Indeed, we
can expect the timing of harvests to be affected by forecasts of extreme heat which could hurt the crops. On
the contrary, sowing might be done earlier if one expects freeze events. Timing is also likely to have a small
impact on production costs, while allowing for a higher efficiency of input usage. An example would be that
forecasts can allow for a more targeted use of irrigation, fertilizers or pesticides – while keeping their related
expenses constant.
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We observe that the date of the first irrigation and the date of ploughing are both reactive to forecasted
HDDs. Forecasted HDDs bring ploughing dates earlier, as well as sowing, although the coefficient is not
significant there. Irrigation on the contrary happens later when one expects adversarial weather, perhaps in
order to save water which is expected to be scarce, or to prevent too much evaporation of the irrigated water.
These adaptive behaviors are likely to impact production volumes, and hence play a role in the observed,
positive revenue response. We also see that realized heat shocks bring irrigation dates earlier, perhaps forcing
the farmers to irrigate earlier in order to avoid crop loss.

If we use these implied responses of growing season outlines to reconstruct our weather data, we can
compare the extent to which the weather faced by farms differs from the weather they are endowed with–
as a result of forecast-induced adaptation. We do so in a simple way. We first compute the distribution
of hours spent at each one degree temperature bin over the October-July period of each growing season,
matching our favored growing season definition. We then vary these start and end dates according to the
department-year specific HDD forecasts and their marginal effects on growing season timing implied by the
results in Table 3. We compute a second distribution of temperature realizations using these endogenous
outlines. We finally compare the evolution of the cumulative distribution functions between the endogenous
season, and the endowed (fixed boundaries) season over 1994-2018. The graph below shows this variation in
mass over the full range of temperatures. We see that while the implied differences in temperatures faced
are small, the direction of the adaptation follows what one should expect. As farmers received information
shocks about incoming hot weather, they shift the timing of their wheat season in order to increase the mass
of realizations for lower temperatures, and to decrease the mass over the range of hot temperatures.
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Figure 3: Difference in Temperature Distributions

Overall, these timing responses highlight potential avenues for no-cost adaptation responses to fore-
casted HDDs, which could explain the positive response of sales for a null response of costs.
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We finally explore crop switching as a potential adaptive strategy. Crop switching might be useful for
at least two reasons. The first one is that one can switch towards heat resilient crops when expecting hotter
weather, hence reducing the losses faced when actually encountering bad weather. Corn and wheat, and
colza and sunflower have different heat tolerance – and moving from corn to wheat and sunflower to colza
might reduce one’s sensitivity to heat shocks. The second is that switching crops can also allow to switch
the average weather faced by farmers. We show in Figure A9 and Figure A10 that typically, wheat is sown
around November, and harvested before August in France, while corn is sown around May and harvested
around October. While fields used for winter wheat are unlikely to be usable for corn later in the year, using
them for wheat when expecting a hot summer can help avoid facing August heat shocks, and reduce the
effective amount of HDDs faced. For a given amount of HDD endowed over one’s potential total growing
season, forecasts can then help reduced the amount of actual HDDs faced, and as a consequence increase
yields. The implied changes in the weather a farm ends up facing might also be much larger than the ones
induced by crop-specific changes in growing seasons that we described above.

Table 4: Farm-Level Crop Diversity (2 months forecasts)

Dependent Variables: Crop Count
Model: (1)

Variables
GDD 0.0001

(0.0002)
GDD (F2) 8.04× 10−5

(0.0006)
HDD -0.0060

(0.0052)
HDD (F2) -0.0258∗∗

(0.0121)

Mean 3.629
Unique Farms 2,603

Fixed-effects
Farm Yes
Year Yes

Fit statistics
Observations 18,917
R2 0.77734

Notes: Two-way department-by-year standard-errors in parentheses. Stars indicate estimate is significantly different from zero:
*p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels and squares are included as controls, as well as
quadratic region-specific time trends.

To study the farms’ crop mix response to expected weather shocks, we first simply look at the evolution
of the number of crops they are growing in a given year. Here, this is simply measured as the number of
crops for which they have a non-zero land use. The table shows that farms reduce their number of crops in
response to expected heat. We use here two month ahead forecasts, where we find a stronger farm response,
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and we expect that crop mix decisions are likely based on longer forecast horizons than other production
decisions.

We conclude this section by showing crop-specific land movements, which are suggestive of the po-
tential switching patterns operated by the farms. Each coefficient corresponds to the coefficient attached to
one-month ahead forecasted HDD in a regression similar to our main specification. We note that sunflower
and corn see their land surface decrease in response to expected hot weather, while wheat, colza, barley ans
peas/beans see their surface increase. We can expect colza and sunflower, as well as wheat and corn to be
closer substitutes on the demand side, while having different heat profiles as highlighted by our Schlenker
and Roberts (2009) specifications in Figure A11. Farmers might then be switching away from sunflower and
towards colza, and away from corn and towards wheat in response to heat forecasts.

−0.34

0.07

0.27

−0.14

0.08

0.24

Wheat

Colza

Barley (Spring)

Peas & Beans

Corn

Sunflower

−0.6 −0.3 0.0 0.3 0.6
Marginal Effect of 1 Additional Forecasted HDD

(Outcome in 2020 euros)

Group a a aOthers Sunflower−Colza Wheat−Corn

Land Responses by Crop

Figure 4: Decomposition of Cropland Responses

Notes: We show the results of our main specification, showing the reaction of different land area margins. Each regression

contains realized and forecasts weather outcomes (rainfall and temperature), as well as region-specific quadratic time trends, farm

and year fixed effects. Standard errors are clustered at the department-by-year level.

5 What are the Consequences of Adaptation?

So far, we have seen that farm revenues and costs respond to forecasts of moderate temperatures but that
costs do not respond to extreme temperature forecasts while revenues increase. These effects should imply
different profit effects from forecasts of moderate versus extreme temperature forecasts. Namely, moderate
temperature forecasts should have little effect on profits while extreme temperature forecasts should have
a large effect on profits. Even though profit effects follow from the effects on revenues and costs, they are
still useful for two reasons. First, they provide a convenient, single variable summary of the net benefits of
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adaptation. Second, they provide a simple yet powerful test of the envelope theorem. Below, we first lay
out the logic for why the regression of profits on forecasts acts as a good test of the envelope theorem before
showing the results. We then use the results presented so far in the paper to offer suggestions for tests that
can be done to support the use of envelope theorem-based estimators. We also look at the timing of effects
on profits to examine the marginal net benefits of forecasts of different horizons, and outline the variation
in profit responses along the range of HDD forecast shocks.

We then move to looking at results between periods, that is whether or not ex-ante adaptation has
dynamic implications for farm profits which differ from the within-period ones. We show that farms face
significant increases in production costs in the periods following the forecast, and that the overall effects of
adaptation are negative. We further detail the source of these cost increases, and discuss their implications
for the costs associated with crop switching.

5.1 Within-Period Effects: Static Considerations

5.1.1 Effect of Forecasts on Profits

A standard model employed in the climate economics literature considers a price-taking, profit maximizing
agricultural firm, facing competitive input and output markets. The firm is further assumed to face weather
shocks affecting its productivity. Denote weather-affected productivity in period t as wt. We assume that
the firm builds an expectation of wt, which is used to make optimal production decisions. We denote this
expectation ωt, and assume that it depends on the past realization wt−1, on a publicly observable forecast
ft, and on an unobserved signal vt. Focusing on static decisions, we can then write the period t profit
maximization problem, where input level xt has to be set to solve:

max
xt

Et

[
πt

∣∣∣wt−1, ft, vt

]
⇔ max

xt

Et

[
ptq(xt, wt)− c(xt)

∣∣∣wt−1, ft, vt

]
.

Here πt is farm profit, pt output price, q(.) the production function which depends on weather and
input choices, and finally c(.) is the cost function. Assuming the problem is well behaved, the first order
condition will equate expected marginal revenues and expected marginal costs.27 That is,

Et

[
pt

∂q

∂x

∣∣∣∣wt−1, ft, vt

]
= Et

[
∂c

∂x

∣∣∣∣wt−1, ft, vt

]
(3)

at optimum.
This implies a profit-maximizing choice of actions x⋆

t = x⋆
t (Et

[
wt

∣∣wt−1, ft, vt
]
), from which we can

recover the indirect profit function π(x⋆
t , wt), and the static value function:

V (wt) = Et

[
π(x⋆

t , wt)

∣∣∣∣wt−1, ft, vt

]
.

A widely invoked argument in climate econometrics states that one can find the direct effect of
weather—the effect purged of the influence of adaptation behavior—on a firm by estimating the marginal
effect of weather on optimal expected profits. This argument follows from the envelope theorem (see, e.g.,

27While we assume that output prices are not responsive to weather, or to sold output, the derivations can be extended to
account for these.
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Deschênes and Greenstone, 2007; Hsiang, 2016):

∂V (wt)

∂wt
= Et

[
pt

∂q

∂wt
|x=x⋆ +

∂x⋆
t

∂wt

(
pt

∂q

∂x
|x=x⋆ − ∂c

∂x
|x=x⋆

) ∣∣∣∣wt−1, ft, vt

]
= Et

[
pt

∂q

∂wt
|x=x⋆

∣∣∣∣wt−1, ft, vt

]
.

In other words, empirical estimates of ∂V (wt)
∂wt

, the variation in value induced by weather, is a sufficient
statistic for pt

∂q
∂wt

|x=x⋆ , the marginal impact of weather on the firm absent any influence from the marginal
benefits or costs of adaptation behavior. Finally, observing the variation in ∂V (wt)

∂wt
across different climates,

either in a cross-sectional or in a long-difference fashion, can be informative of how adaptation to local
climate can impact the sensitivity to realized heat. One can then backtrack the costs of adaptation, from
these estimates of benefits of adaptation, as they are to be equivalent.

We argue that observing ∂V (wt)
∂ft

is a useful statistic to test whether the envelope theorem is empirically
applicable. In particular, a necessary condition for the envelope condition to hold can be tested using the
null hypothesis ∂V (wt)

∂ft
= 0.28 To see why this is a test of the envelope condition, note that because forecasts

are purely informational, we have:

∂V (wt)

∂ft
= Et

[
∂x⋆

t

∂ft

(
pt

∂q

∂x
|x=x⋆ − ∂c

∂x
|x=x⋆

) ∣∣∣wt−1, ft, vt

]
. (4)

If forecasts are a meaningful signal for agents, their variation will shift firm beliefs about expected weather,
conditional on their private signal vt and past realized weather wt−1. If forecasts are meaningful, and if
agents are both able to react to them and should react to them, we have that:

Et

[
∂x⋆

t

∂ft

∣∣∣∣wt−1, ft, vt

]
̸= 0.

Thus, assuming actions respond to forecasts, we can conclude,

∂V (wt)

∂ft
̸= 0 =⇒ Et

[
∂x⋆

t

∂wt

(
pt

∂q

∂x
|x=x⋆ − ∂c

∂x
|x=x⋆

)∣∣∣∣wt−1, ft, vt

]
̸= 0.

We propose Equation (4) as a test for the applicability of Equation (3) in an empirical context. Under
the condition that forecasts are a meaningful signal to agents (conditional on the information they already
possess), then the static envelope theorem will not be applicable if the marginal adjustments to optimal
profit with respect to variation in forecasts is non-zero.

In Table 5, we verify that this is indeed the case. The table shows the effects on the gross operating
income of the farm. This measure is expansive, and for example encompasses subsidies received by farms.
The coefficients of interest are the ones corresponding to the one month ahead GDD and HDD forecasts.
All the regressions include the same controls as in the revenue and cost results (farm and year fixed effects,
region-specific quadratic time trends, and the level and square of realized and forecasted rainfall). The table
shows that HDD forecasts have a significant positive effect on farm profit.29 A one unit increase in forecasted
HDD increases farm profits by e2, 067, or 2.3% of the mean. On the contrary, the effect of forecasted GDDs
on profits is not distinguishable for zero. This implies that in our context, only adaptive behaviors that
respond to forecasted changes in extreme weather conditions have net positive profit effects, while those

28While this is a necessary condition of the envelope theorem to hold, it is not a sufficient one as it only captures the size of
the confounding effect of ex ante adaptation.

29Table A12 gives the profit results for one-month and two-months ahead leads.
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responding to forecasted growing degree days have a net-zero effect. We give in Table A8 the same set of
results with an additional measure of profits as value added, which confirm the signs and levels of these
results.

Table 5: Profit Responses to Forecasts (1 month lead)

Dependent Variables: Profit
Model: (1)

Variables
GDD -8.322

(13.16)
GDD (F) 3.257

(43.14)
HDD 184.6

(277.2)
HDD (F) 2,066.7∗∗∗

(708.1)

Mean 86,695.2
Unique Farms 2,603

Fixed-effects
Farm Yes
Year Yes

Fit statistics
Observations 18,917
R2 0.84140

Notes: Two-way department-by-year standard-errors in parentheses. Stars indicate estimate is significantly different from zero:
*p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels and squares, as well as quadratic region-specific time
trends, are included as controls. The input price variable corresponds to prices observed at the store level in an agricultural
input price survey run across France in order to build input price indices.

The implications for the envelope theorem are that we cannot expect the indirect—adaptive—effects
of changes in extreme weather to be netted out in an optimization context. Instead, it appears that farmers
are re-optimizing production decisions to respond to changes in extreme weather, resulting in non-zero profit
effects. As such, this effect will be confounded with the direct effect of variations in extreme weather on
production. Regressions of profit on realized extreme weather are thus likely to account for these joint
channels.

5.1.2 Checking Assumptions Underlying Application of the Envelope Theorem

The envelope theorem relies on some form of differentiability of the value function, and it only applies to
marginal variation in the parameters of the optimization problem. As such, two reasons why it might not
apply are that: the context studied is not sufficiently well approximated by a differentiable model, or that
the empirical variation in weather used for estimation is non-marginal.

Evidence relevant to the first point has already been presented in subsection 4.3. The main actions
that respond to forecasts are related to the timing of ploughing, sowing and irrigation, as well as changes in
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crop mix composition. These actions have opportunity costs if they are not done at the right time, but they
do not necessarily impose substantial additional costs on firms.30

In the second case, we note that hourly weather realizations are usually aggregated over time to
yearly or monthly measures, the most frequent aggregates being: mean temperature, mean daily maximum
temperature, growing and heating degree days, counting hours spent in specific temperature bins, or splines
(Cui et al., 2023). These transformations help reduce the dimensionality of high-frequency weather data
when matched to lower-frequency outcome data. In the context of agriculture, this is necessary given that
yields, output, and profits are typically observed at the agricultural season level, while weather is observed
daily or hourly. This aggregation requires at least two things. First that the impact of temperature is
temporally separable. Here, bins, splines and GDDs/HDDs offer more flexibility than averages, but all rely
on some form of homogeneity—for example that a one degree increase from 9°C to 10°C at 12PM is similar
to an identical increase at 12AM on the same day, or that that same increase can be treated in the same
way at 12AM on January 4th and March 4th of the same year.31

The second is that marginal and non-marginal variation in weather impact outcomes in the same way.
Here we note that binning the data significantly relaxes the bite of that assumption. For GDDs (and in
the same way HDDs), an hourly realization that shifts up by 4°C will be treated in the same way as four
hourly realizations shifting up by 1°C, as long as both of these shifts do not push them past the bounds used
to compute the GDDs. However, we might assume agents react differently to forecasts of these respective
4°C and 1°C shifts, and that the first one induces a non-marginal response to optimal production decisions
pushing us beyond the bounds of applicability of the envelope theorem.

Decomposing weather as in subsection 4.3 might be a useful robustness test for two-way fixed effect
studies of climate change impacts. Significant differences in the effects of marginal and non-marginal tem-
perature shocks might be indicative that the marginality assumption underlying the interpretation of the
results is not warranted.

5.1.3 Timing of Effects on Profits

We next show the marginal response of profits to different HDD leads. This exercise serves two purposes.
First, adding longer-horizon forecasts to the regression helps isolate news shocks. Conditional on a two-
month-ahead forecast, for example, variation in the one-month-ahead forecast identifies the effect of news
arriving in the intervening month. Second, further-ahead leads might allow for more adaptation if farms are
faced with adjustment costs. By estimating the effect of forecasts over multiple horizons, we can trace out
the marginal value of information at different forecasting horizons.

The estimates follow the distributed lag specification from Equation 2. As such, the regressions used to
produce this graph are identical to the ones shown in Table 5, but for the joint inclusion of weather forecasts
from lead one to five-month ahead. This means that we include realized rainfall in level and squares as
controls, as well as department and year fixed effects and quadratic region-specific time trends. We cluster
the standard errors at the department and year levels to account for spatial correlation in weather and
agricultural patterns.

30There could be scarcity pricing for inputs like labor if, for example, sowing decisions become more correlated within a year.
That effect would be included in our cost measure.

31Gammans et al. (2017) discuss the plausibility of that assumption for France. Feng et al. (2015) incidentally discuss the
particular role of heat shocks during corn flowering, as potential counter-argument to this homogeneity assumption.
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Figure 5: Profit Reactions

Figure 5 shows the results of estimation. The forecast lead is given on the x-axis with a negative sign,
in order for the graph to have a chronological interpretation, a value of -1 indicates weather information
released one month ahead of the event, and so on. The coefficients associated with HDD realizations are
shown for a lead of 0. Five-month ahead forecasts are included in the regression but not shown in the figure
because they act as controls for isolating news shocks for the four-month-ahead forecasts. Whiskers show
95% confidence intervals.

Realized hot weather has a negative effect on profits, albeit not significant at the 5% threshold.
One-month ahead forecasts still have a large and significant positive impact on profits, while further leads
have a decreasing value for farmers, up to four-month ahead forecasts which have an imprecise and slightly
negative effect. Overall, this figure highlights that farmers mainly use one-month ahead forecasts to adapt
their production schedules. The point estimates suggest that there is rising total value from forecasts up to
three-months-ahead, though the marginal value is monotonically declining in forecast horizon.

5.1.4 Targeting Expected Heat

We conclude this section by decomposition the profit impacts of forecasted heating degree days, conditional
on the sign and magnitude of the forecast sign error – whether forecasts under- or over-estimate the realized
heat shocks of the season.

We run a specification similar in all points to the one used for Table 5, but for the decomposition of
the forecasted HDD variable—forecasted HDDs located in distance bins from the realized shock. We take
a bin of [−.1, .1] around the realized HDD shock, and use it as our omitted category in the regression. We
then identify the median negative error (realization is larger than forecast), and median positive error, and
construct bins (as denominated on the figure): bin = 1 for the below median negative errors (below the
median value of negative errors), bin = 2 for above median negative errors (errors closer to the realization),
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bin = 3 for our omitted category, and {4, 5} work similarly for positive forecast errors. These four dummies
replace our HDD(forecast) variable in our main regression, which remains otherwise identical. In the
graph below we show the coefficient for these four variables, which then indicate the marginal profit effects
of one extra forecasted HDD in the specific bin. Complete cost, revenue and profit responses are shown in
Table A35.
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Figure 6: Profit & Sign of the Forecast Error

We see an interesting an intuitive pattern: negative forecast errors are costly to farmers relative to
on-point forecasts – they likely lead to farmers under-forecasting future heat shocks and suffer from the full
un-adapted impact of them. On the contrary, over-forecasts lead to no statistically significant gains in profit,
although the point estimate is slightly positive.

5.2 Between-Period Effects: Dynamics of Adaptation

We next move to studying the dynamic consequences of the ex-ante adaptation generated by farmers’ reaction
to one-month ahead forecasts. We first describe our empirical approach, then the profit results, and finally
some channels explaining these results.

5.2.1 Framework

It is useful to restate the timing of the ex-ante adaptation we are considering. We are looking at the effect of
a marginal variation in the one-month ahead forecast received by farmers on farm-level outcomes, conditional
on realized weather. We want to capture the costs and benefits of adaptation actions implemented which
react to forecasts conditional on realized weather, and as such the costs and benefits of ex-ante adaptation.
In this section, we focus on the dynamic effects of this adaptation, first the potential effects in periods after
period t, and second making sure past outcomes are not responsive to the forecast received at t.
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A first thing we have to note is that farmers are taking adaptation actions to maximize the present
discounted value of their expected flow of profits. We only observe realized farm level outcomes in future
periods, and not their counterfactual values under the other possible states of nature. We hence focus on
the effects of adaptation on these realizations. This focus introduces a potential bias in our error term,
in the form of the difference between the expected average outcome when implementing the adaptation
action, and the realized outcome. This difference needs to be orthogonal to the forecast at t in order not to
bias our results. Assuming that forecasts at t are redundant in terms of information about future weather
outcomes once we control for weather realizations at t, and assuming that the forecasts are unbiased, then
controlling for period t realized weather should be enough to address this potential bias when looking at
future periods. These informational redundancy and unbiasedness assumptions should also be sufficient to
remove any potential correlation between current forecasts and future realized and forecasted weather shocks
which will also influence future farm outcomes.

When looking at past periods, wd(j)t will however not be sufficient to remove the correlation between
past realized and forecasted weather and period t forecasted weather. We will add past realized weather as
additional controls to remove this correlation which could bias the coefficients. We further add these controls
for all our regressions on both past, present and future outcomes.

Our design then follows, for outcome yj,t+h, with t ∈ [−2, 3] for farm j, in department d and region r:

yj,t+h =

0∑
k=−2

βw
1,h,kGDDd(j),t+k + βw

2,h,kHDDd(j),t+k + gh,k
(
Pd(j),t+k

)
+

βf
1,hFGDDd(j),t + βf

2,hFHDDd(j),t + gh
(
FPd(j),t

)
+

ζ1d(j)t+ ζ2d(j)t
2 + γj + ηt + εjt

We keep the same notation as before, where GDDd(j),t+k is period t + k growing degree days for
department d in which j is located, GDDd(j),t+k the heating degree days, the function gh,k

(
.
)

is a second
order polynomial in realized rainfall for the period t+k. FGDD denotes a forecasts, and we follow the same
notation for the other weather variables. We include a quadratic time trend, which we allow to be region
specific, and also include year and farm fixed effects.

We show in Table A21 regressions of different lead and lag values of forecasted heating degree days
on the set of regressors specified here. They show that conditional on our controls, there is no significant
correlation between period t forecasted degree days and both previous and future period forecasts. Such
correlation would bias βf

2,h, and prevent us from interpreting it as the consequences of ex-ante adaptation.

5.2.2 Results

We start by looking in Figure 7 at the effect of ex-ante adaptation on profits. Each coefficient corresponds
to a separate regression which follows the design outlined above. The table for the results is Table A22. We
recover a value of ex-ante adaptation at t of 1,908, which is close to the one outlined in the previous section.
Within the period of the shock, ex-ante adaptation leads to a net increase in farm profit. However, the next
two periods are followed by negative and statistically significant coefficients, with values resp. of 1,827 and
1,435. If we take these three periods as the total of the significant effects caused by adaptation at t, and a
discount factor of 10%, this implies a present discounted value of ex-ante adaptation of -980e.
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Figure 7: Dynamic Effects of Ex-Ante Adaptation on Profit

In our case, it seems that farms face decreases in profit following their ex-ante adaptation to weather
shocks. If we assume that farmers are rational, and foresee the negative consequences of their adaptation
actions in future periods, this should imply that the counterfactual of no-adaptation in the face of a marginal
change in heating degree days is also a decrease in profit of at least the same value. One of the main adaptation
channel in our context is crop switching. This dynamic pattern of immediate gains, likely driven by a lowered
sensitivity of profit to heat, followed by future decreases in profits, then justified the presence of important
switching costs, which have recently taken a large place in the dynamic land use literature.

We next use the same regression design to study the pattern of production costs across times, showing
the graphical results in Figure 8, and the table in Table A23.
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Figure 8: Dynamic Effects of Ex-Ante Adaptation on Production Costs
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The costs results track well with the ones for profits. First at period t and as we had seen previously,
adaptation does not come with a significant increase in production costs. However, the next period is followed
by a net positive increase, and the following one still shows a positive albeit non-significant coefficient. These
seem to confirm that there are costs to crop switching. Crop switching is inherently dynamic in the presence
of switching costs, as crop choice has an option value. These results show crop switching is also dynamic
in the sense that its benefits and costs are not realized at the same time, with gains at the moment of the
shock, and losses in the following period. Both Livingston et al. (2008), Scott (2013) and Burlig et al. (2024)
emphasize the effects of a field’s past state for its current and future productivity. Here, we show that farms
respond to disruptions in their crop choices by increasing their production costs, potentially to compensate
the decreased productivity of the fields on which crop switching happened. We conclude by describing the
source of these increases in costs, by looking at input specific responses in Figure 9. These are useful to
illustrate how farms attempt to account for the consequences of past crop choice disruptions.
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Figure 9: Dynamic Effects of Ex-Ante Adaptation on Input Use

The input responses track with the cost ones. In the period of the forecast, inputs do not respond.
However, we observe positive responses in the next two periods, first pesticides, labor and fertilizers in period
t+ 1, and then labor and pesticides in period t+ 2.

6 Limits to Adaptation

We have so far highlighted that French farms implement adaptation strategies in response to expected
forecasted shocks. Within the period of the shock, this adaptation leads to increases in profit. For a given
realized temperature, cereal, oil, and protein crop farms are able to use forecasted weather to shift their
production schedule to generate relatively large revenue gains at relatively low costs. Specifically, they use
forecasted weather to shift the timing of key moments of the growing season to better match the coming
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weather, as well as to switch the composition of their crop mix. It is important to note that this adaptation
strategy is, by design, aligned with the weather variation that farmers have observed in France so far. By
this, we mean two things: first, that these adaptation strategies are aligned with the range of extreme heat
shocks faced in the historical record—and Figure A19 shows that temperature realizations substantially
above 30°C have been rare in France—and second that they are aligned with the frequency of these shocks
within and across seasons. Figure A8 shows that overall, heating degree days remain scarce. It is likely that
both more extreme shocks, and more frequent shocks, would require different adaptation strategies.

In that sense, the results presented above can only be interpreted as indicative of low within-period
costs of adaptation to weather—and to climate change—over 1994-2018, and not as indicative of future costs
of adaptation to expected climate change. The French government officially expects a 4°C heating scenario
for the country over the coming century,32 for which the recent past is unlikely to be informative. In order
to make progress on the approximation of costs of adaptation to climate change, we examine heterogeneity
of our results to different average climate conditions. Specifically, we aim at showing how the consequences
of heat shocks—both in terms of their impact on profits, and on adaptation costs—change when heat shocks
become more frequent and more pronounced. When the weather draws from climate become more adverse,
adaptation strategies are likely to shift, potentially becoming both more costly and less effective. The first
way to illustrate the limits to the current adaptation strategies is to focus on the set of worse years within
our sample, and test whether we still observe profitable adaptation there. The second way we address this
question of limits to adaptation is to look at farms that are already constrained in terms of crop-switching,
which is the most prominent type of adaptation strategy we see here. We address these two points in turns.

6.1 Limits to Adaptation: Worsened Weather

To examine the heterogeneity of our results to the scale of temperature realizations, we compute the distri-
bution of heating degree days in our data, and select data in the top decile. We further restrict this sample
by only keeping farms observed at least twice—in order for effects to be identifiable in the presence of farm
fixed effects. We then perform our analysis on this subset and compare the results to the ones from our
complete sample.

Results on revenues and costs are shown in Table 6. Here, the large positive and statistically significant
response to forecasted HDDs disappears. In very hot years, farms seem to lose their ability to use heat
forecasts in order to generate additional profits. While one-month ahead forecasts do not generate an
additional cost response, the two-month-ahead forecasts shown in Table A28 generate a large increase in
labor use. There, a one unit increase in forecasted HDD leads to an increase of 35 hours, or a 1.5% increase
in total hours.

Taking stock of these results, in years with especially severe heat, farmers seem to lose their ability to
use heat forecasts to generate additional profits. On the contrary, they start responding to both forecasted
realized HDDs with costly increases in labor, which generate noisy increases in the aggregate farm-level cost
measures.

The implications of heat shocks appear to be quite heterogeneous across the distribution of heat
realizations. While for the time being, French farmers seem to have been able to leverage heat forecasts to
generate large profit gains at a relatively low cost, the consequences of adaptation on the production schedule
become more manifest as heat increases. In our sample of worse years, farmers lose their ability to generate
profit gains from heat forecasts. Instead, they rely on an increase in labor, both reactive to forecasted and
realized heat, in order to compensate for the effects of heat on output.

32See for example https://www.lemonde.fr/en/environment/article/2023/06/12/how-can-france-adapt-to-4-c-of-global-warming_
6030922_114.html

32

https://www.lemonde.fr/en/environment/article/2023/06/12/how-can-france-adapt-to-4-c-of-global-warming_6030922_114.html
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Table 6: Revenues and Costs Under Adversarial Weather (1 month lead)

Dependent Variables: Revenue Costs
Model: (1) (2)

Variables
GDD -78.75 -21.00

(46.48) (24.87)
GDD (F) 152.9∗ 31.72

(74.93) (50.64)
HDD 747.6 169.2

(471.1) (216.8)
HDD (F) 552.0 540.7

(672.3) (582.7)

Mean 156,149.9 129,786.1
Unique Farms 852 852

Fixed-effects
Farm Yes Yes
Year Yes Yes

Fit statistics
Observations 3,145 3,145
R2 0.91346 0.95731

Notes: One-way department-level standard-errors in parentheses. Stars indicate estimate is significantly different from zero:
*p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels and squares are included as controls, as well as
quadratic department-specific time trends.

6.2 Limits to Adaptation: Shutting Down Crop Switching

We next turn to looking at farms that grow a subset of crops with similar weather sensitivity, and for which
we will not observe effective crop switching along the wheat-corn or colza-sunflower lines. Sub-setting the
sample to single crop farms would limit the sample size too much, so we limit our sample to farms growing
the following crops uniquely: wheat, rye, barley and triticale. These crops have comparable temperature
sensitivities, and hence this should allow us to test the consequences of adaptation when adaptation options
are constrained.

We show our main profit results on this subset below. We additional show comparable results on value
added in Table A24
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Table 7: Revenues and Costs with Limited Crop Switching (1 month lead)

Dependent Variables: Profit
Model: (1)

Variables
GDD -196.0∗∗

(78.32)
GDD (F) -60.90

(158.8)
HDD -107.1

(2,139.2)
HDD (F) -4,159.3

(4,594.3)

Mean 62,266.7
Unique Farms 182

Fixed-effects
Farm Yes
Year Yes

Fit statistics
Observations 365
R2 0.93709

Notes: Two-way department-by-year standard-errors in parentheses. Stars indicate estimate is significantly different from zero:
*p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels and squares are included as controls, as well as
quadratic region-specific time trends.

We note simply that the positive profit response to forecasted heating degree days disappears. The
coefficients remain positive but much lower in scale, and lose their significance. This remains a purely
descriptive exercise, as farms are selected into crop-mix composition, and crop-mix size in the same way
that manufacturing establishments are selected into their product mix composition. One illustration of this
is the multi-firm model of Mayer et al. (2014). We then take this as suggestive evidence that farms already
constrained in terms of adaptation strategies are less likely to be able to implement the highly efficient
adaptation strategies observed in our main sample.

We conclude by noting that on-the-spot strategies are likely to be transitory strategies, ill-suited to
a future climate where heat shocks are frequent. While farmers have been able to mitigate the impacts of
heat in the very hot years observed over 1994-2018, this will likely not remain the case in a hotter world.
There is also a fundamental limit to how much decisions about the timing of planting and harvesting can be
changed.

7 Conclusion

Climate change is expected to have significant and wide ranging impacts on human and non-human systems.
Human impacts range from significant out-migrations (Cattaneo et al. (2019) for a review), to negative
human health consequences (Deschênes and Greenstone (2011), Carleton (2018), Shrader et al. (2023)),

34



to productivity and growth declines (for example Dell et al. (2012)). Recovering precise estimates of the
impacts of climate change in all these areas is important to understand the scope of climate change, and to
design policies that could mitigate its effects. These policies also require a good understanding of the costs
of adaptation.

Here, we propose a precise analysis of the costs of adapting to heat shocks in French agriculture, a
relevant context given the centrality of agriculture for climate change policies, and the relative size of France
as an exporter of agricultural goods. We leverage precise accounting farm-level data over 1994-2018, which
allows us to track the differential responses of farmers to growing and heating degree days, and to decompose
these responses into responses to forecasts, and responses to residual surprise shocks. We highlight how—
so far—French farmers have been able to use low cost adaptation strategies to heat forecasts, in order to
generate large profit gains. We build confidence in these results, by decomposing the cost and revenue
responses into output and input volumes and prices. We highlight the role of timing decisions, and of crop
switching, in generating these gains.

This data also allows us to underline how the presence of these net profit gains from additional weather
information contradict the assumptions of the envelope theorem, frequently used in the climate literature.
Indeed, in our context, farmers’ response to small variations in forecasted heating degree days have net
positive profit impacts. We decompose the variation in weather used to build growing and heating degree
days, and show how heating degree days are mostly composed of non-marginal variation ill-suited to the
envelope theorem. Furthermore, the presence of no-cost adaptation strategies like timing, imply that some
types of adaptation responses are likely to have non-continuous effects of profits, again going against the
usual assumptions of the envelope theorem.

Finally, we show how the low cost, high revenue responses of French farmers to heat forecasts are
specific to the period we study, and are unlikely to hold in a future warmer world. Focusing on the upper tail
of our heating degree day distribution, we show how then, farmers lose their ability to generate profit gains
from heating degree days forecasts. On the contrary, they are now forced to implement costly adaptation
strategies, in the form of input increases, to protect their production. Similarly, farmers constrained in their
ability to modify their crop-mix composition do not show the same ability to generate profit gains from heat
forecasts.
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Appendix for online publication:
Costs of Climate Adaptation: Evidence from French Agriculture

A Additional Figures and Tables

A.1 Figures

A.1.1 Precision of Forecasts
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Figure A1: Distribution of Temperature Forecast Error

Notes: These estimated kernel densities show the empirical distribution of the forecast errors (realized minus forecasted), for both

growing and heating degree days (aggregated over the growing season) in France over the 1994-2018 period. We later cut our

sample so GDD errors are above -500, cutting the left tail of the GDD error distribution. As expected, HDDs correspond to

extreme events which are harder to predict, and are under predicted in France.
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Figure A2: Distribution of Rainfall Forecast Error

Notes: These estimated kernel densities show the empirical distribution of the forecast errors for rainfall (aggregated over the

growing season) in France over the 1994-2018 period.
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Figure A3: Correlation Realized and Forecasted Mean Temperature

Notes: We show the correlation between forecasted mean temperatures and realized ones over 1994-2018 in France. We show the

correlation for the sample used for estimation, that is for the set of observations with one month ahead forecasted GDD errors

above -500. The red line corresponds to the 45°line, and the blue line to a smoothed estimator matching the distribution of points.
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Figure A4: Correlation Realized and Forecasted GDDs

Notes: We show the correlation between forecasted GDDs and realized ones over 1994-2018 in France. We show the correlation

for the sample used for estimation, that is for the set of observations with one month ahead forecasted GDD errors above -500.

The red line corresponds to the 45°line, and the blue line to a smoothed estimator matching the distribution of points.
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Figure A5: Correlation Realized and Forecasted HDDs

Notes: We show the correlation between forecasted HDDs and realized ones over 1994-2018 in France. We show the correlation

for the sample used for estimation, that is for the set of observations with one month ahead forecasted GDD errors above -500.

The red line corresponds to the 45°line, and the blue line to a smoothed estimator matching the distribution of points.

42



A.1.2 Climate in France

0.0

0.2

0.4

−5.0 −2.5 0.0 2.5
Standardized Dispersion

D
en

si
ty

Legend

Above 0C

Above 28C

Above 30C

Average

Below 0C

Patterns of Temperature Realizations

Figure A6: Distribution of the Standardized Conditional and Unconditional Mean Temperature

Notes: We show kernel density estimators giving the distribution of conditional standardized temperature realizations in France,

at the department level, over 1994-2018. As expected, higher realizations have distributions with a larger spread. On average,

however, realizations are quite homogeneous across the country.

These graphs are useful to highlight the spatial variation in exposure to heat in France. We first
observe the divide between the South of the country more exposed to heating degree days than the center
and North. Second, we see how mountainous regions in the center, around the Massif Central, the Alpes
and the Pyrénées have lower growing degree days values.

The main cereal region of the country situated in the large plains below Paris up to the Massif Central
have overall large growint degree day values, and low heating degree day values for the 1994-2018 period.
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Figure A7: Distribution of Growing Degree Days

Notes: We show a map of average GDD realizations in France over 1994-2018 at the department level. The large geographical

patterns are that temperature is on average higher in the South along the Mediterranean coast, and lower in mountain regions

(Massif Central in the center, Pyrenees in the South at the border with Spain, and the Alpes at the border with Switzerland and

Italy).
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Figure A8: Distribution of Heating Degree Days

Notes: We show a map of average HDD realizations in France over 1994-2018 at the department level. HDDs are on average

close to zero, with positive values in the South both around Marseilles, and in the agricultural region stretching between Toulouse

and Bordeaux.

A.1.3 Growing Seasons
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Figure A9: Wheat Growing Season in France

Notes: This figure shows the distribution of a proxy for the start and end of the wheat growing season as observed at the plot level

in three cross-sectional surveys of growing practices. A unique kernel density describes spatial and cross-farm heterogeneity

within a same year, while the variation across kernels shows variation across growing seasons. The x-axis shows the number of

days since January 1st of the first of two calendar years overlapped within a unique agricultural season.
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Figure A10: Corn Growing Season in France

Notes: This figure shows the distribution of a proxy for the start and end of the corn growing season as observed at the plot level

in three cross-sectional surveys of growing practices. A unique kernel density describes spatial and cross-farm heterogeneity

within a same year, while the variation across kernels shows variation across growing seasons. The x-axis shows the number of

days since January 1st of the first of two calendar years overlapped within a unique agricultural season.
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A.1.4 Yield and Output Effects of Weather Variation
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Figure A11: Temperature Effects on Crop-Specific Yields

Notes: This figure shows restricted cubic splines describing the non-linear relation between exposure to temperature during the

growing season and crop yields. The regressions are farm-level versions of the specification from Schlenker and Roberts (2009).

In addition to cubic splines in temperature, the regressions include farm fixed effects and region-specific quadratic time trends as

controls. Standard errors are computed by bootstrapping at the farm level. Temperature effects are normalized relative to the

impact at 0°C.
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Figure A12: Temperature Effects on Farm Total Output

Notes: This figure shows restricted cubic splines describing the non-linear relation between exposure to temperature during the

growing season and farm output. Output is measured as the sum of output for wheat, durum, oats, corn, sorghum, barley, rye,

triticale, sunflower, colza, soy, peas and fava. Our regressions are similar to that of Schlenker and Roberts (2009).The regressions

are farm-level versions of the specification from Schlenker and Roberts (2009). In addition to cubic splines in temperature, the

regressions include farm fixed effects and region-specific quadratic time trends as controls. Standard errors are computed by

bootstrapping at the farm level. Temperature effects are normalized relative to the impact at 0°C.
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A.1.5 Multi-Product Farms
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Figure A13: Conditional Probabilities to Grow Crop Pairs

Notes: This figure shows the probability that a farm in the FADN grows a given crop, conditional on growing the row-specified

one.

Table A1: Descriptive Statistics - Farm-Level Crop Mix

Cereals Oil-Protein Industrial
Cereals 1 0.3321 0.0999

Oil-Protein 0.9873 1 0.1321
Industrial 0.9991 0.4444 1

49



A.1.6 Input Price Indices
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Figure A14: Comparison of Input Price Indices Series

Notes: This figure shows the input price index used for fertilizers used in the paper, and coming from the French statistical

agency (INSEE), and compares this index, and its subset specific to nitrogen-based fertilizers to the Producer price index for

fertilizer-based fertilizers from FRED for the USA.
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A.1.7 Additional Results
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Figure A15: Effect of Forecated HDDs

Notes: We show the results of our main specification, varying the forecast lead value used in the regression. For the forecast of

lead 0, we only include the realization of the weather shocks. As such, the graph compares the effect of expected HDD shocks

across independent regressions, and serves as a robustness test of our results.
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Figure A16: Decomposition of the Land responses

Notes: We show the results of our main specification, showing the reaction of different land area margins. Each regression

contains realized and forecasts weather outcomes (rainfall and temperature), as well as region-specific quadratic time trends, farm

and year fixed effects. Standard errors are clustered at the department-by-year level.
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Figure A17: Decomposition of Labor Responses

Notes: We show the results of our main specification, showing the reaction of different labor margins. Each regression contains

realized and forecasts weather outcomes (rainfall and temperature), as well as region-specific quadratic time trends, farm and year

fixed effects. Standard errors are clustered at the department-by-year level.
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Figure A18: Cost and Revenue & Sign of the Forecast Error
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A.2 Tables
Table A2: Descriptive Statistics - Farm-Level Dataset

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Rainfall 18,917 0.755 0.172 0.372 0.634 0.848 1.634
Rainfall (F1) 18,917 0.854 0.126 0.608 0.759 0.921 1.747
Rainfall (F2) 18,917 0.874 0.129 0.649 0.780 0.944 1.812
GDD 18,917 2,140.454 263.726 1,132.679 1,957.350 2,292.319 3,239.741
GDD (F1) 18,917 2,182.291 237.644 1,053.609 2,022.225 2,305.369 3,015.025
HDD 18,917 2.362 3.202 0.000 0.243 3.131 23.808
HDD (F1) 18,917 0.438 1.120 0 0 0.4 16
Sales 18,917 155,386.200 113,739.700 1,106.436 78,738.730 199,717.400 1,333,809.000
Total Costs 18,917 123,249.100 85,427.280 6,955.080 66,903.320 156,468.300 1,035,695.000
Intermediate Inputs 18,917 103,749.600 67,148.830 5,860.800 59,074.470 132,588.800 841,067.000
Value Added 18,917 58,356.790 62,857.780 −159,167.000 18,305.820 80,436.330 875,181.400
Profit 18,917 86,695.230 70,268.490 −135,056.500 40,065.860 114,770.700 973,561.100
Price Index 18,917 263.040 296.369 1.463 140.488 230.596 11,322.960
Storage (sum) 18,917 88.646 1,877.100 −28,569 −280 500 25,085
Storage (index) 16,075 65.407 983.746 −19,787.310 −67.932 176.113 25,085.000
Output (sum) 18,917 7,793.042 5,033.159 146 4,252.4 10,170.6 58,374
Output (index) 18,917 2,400.654 2,926.340 27.588 768.565 2,846.639 58,374.000
Production (corn) 10,346 3,464.252 4,046.307 0.000 877.250 4,682.250 58,374.000
Price (corn) 9,958 150.008 39.116 36.012 122.962 172.746 1,332.181
Sales (corn) 10,346 53,507.850 69,739.220 0.000 11,162.650 68,977.980 1,155,906.000
Quantity Sold (corn) 10,346 3,437.496 4,133.216 0.000 817.000 4,617.000 68,524.000
Production (wheat) 17,336 3,840.134 3,005.148 0.000 1,665.300 5,248.115 31,452.000
Price (wheat) 17,181 163.115 37.955 16.831 136.366 184.217 1,768.937
Sales (wheat) 17,336 61,538.020 53,985.880 0.000 24,344.600 82,921.740 660,068.800
Quantity Sold (wheat) 17,336 3,798.700 3,162.210 0.000 1,560.000 5,166.000 41,140.000
Irrigation 18,917 683.145 2,664.963 0 0 0 46,053
Labor 18,917 2,684.032 1,329.925 160 1,600 3,200 13,200
Phytosanitary 18,917 23,072.220 16,499.150 0.000 11,388.300 30,872.050 189,311.100
Fertilizer 18,917 31,777.250 20,726.760 0.000 17,456.120 41,060.730 217,676.500
Land 18,917 14,504.110 8,619.045 948 8,379 18,709 79,549
Seeds 18,917 12,231.150 9,685.803 0.000 5,847.321 15,882.330 146,058.500
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Table A3: Descriptive Statistics - Store-Level Dataset

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Pesticide Prices 2,126 615.503 718.332 23.845 257.649 696.640 9,973.849
Fertilizer Prices 3,098 3,253.702 2,958.929 3.500 2,450.439 3,783.050 125,017.500
Seed Prices 1,831 343.569 1,777.400 28.504 95.647 171.789 48,892.200

Table A4: Descriptive Statistics - Plot-Level Data

Statistic N Mean St. Dev. Min Max

Ploughing 32,263 337.475 83.538 15 570
Sowing 39,988 378.568 99.240 15 570
Irrigation 3,775 532.128 24.309 170 630
Harvest 38,818 594.288 41.551 510 720

Table A5: Descriptive Statistics - Land Price Data

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Land Prices 3,405 5,753.823 3,084.605 448.000 3,717.000 6,834.000 30,097.360
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Table A6: Descriptive Statistics - Weather Outcomes within Samples

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Panel A Entire Sample

Rainfall 18,926 0.755 0.172 0.372 0.634 0.848 1.634
Rainfall (F1) 18,926 0.854 0.126 0.608 0.759 0.921 1.747
Rainfall (F2) 18,926 0.874 0.129 0.649 0.780 0.944 1.812
GDD 18,926 2,140.355 263.708 1,132.679 1,957.350 2,292.319 3,239.741
GDD (F1) 18,926 2,182.468 237.730 1,053.609 2,022.225 2,305.860 3,015.025
HDD 18,926 2.361 3.202 0.000 0.242 3.131 23.808
HDD (F1) 18,926 0.438 1.120 0 0 0.4 16

Panel B Worst Region-Years

Rainfall 1,425 0.678 0.145 0.372 0.557 0.749 1.153
Rainfall (F1) 1,425 0.881 0.114 0.608 0.798 0.946 1.203
Rainfall (F2) 1,425 0.903 0.118 0.686 0.808 0.972 1.190
GDD 1,425 2,417.994 255.672 1,928.005 2,196.093 2,587.399 3,139.565
GDD (F1) 1,425 2,355.650 276.100 1,866.416 2,136.270 2,548.512 3,004.334
HDD 1,425 10.392 3.509 6.126 7.347 12.020 23.808
HDD (F1) 1,425 1.414 2.073 0 0.02 2.1 16
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Table A7: Cost and Revenue Reactions to HDD

Dependent Variables: Sales Costs Sales Costs
Model: (1) (2) (3) (4)

Variables
GDD 5.103 1.213 10.18 2.948

(11.84) (7.809) (10.99) (8.430)
GDD (F) 37.39 30.79∗∗

(34.66) (14.48)
GDD (F2) 55.55 38.42∗∗

(38.62) (17.50)
HDD -158.3 -191.9 -225.0 -196.6

(332.2) (156.9) (311.9) (193.9)
HDD (F) 1,192.2∗∗∗ -56.71

(402.7) (178.5)
HDD (F2) 1,049.7 -48.19

(699.9) (411.9)

Mean 155,386.2 123,249.1 155,386.2 123,249.1
Unique Farms 2,603 2,603 2,603 2,603

Fixed-effects
Farm Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 18,917 18,917 18,917 18,917
R2 0.88715 0.93666 0.88715 0.93667

Notes. Two-way department-by-year standard-errors in parentheses. Stars indicate
estimate is significantly different from zero: *p < .10, **p < .05, ***p < .01.
Realized and forecasted rainfall in levels and squares are included as controls, as
well as quadratic region-specific time trends. Sales correspond to total sales at the
farm levels, and costs to total costs.
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Table A8: Cost, Revenue and Profit Reactions to HDD

Dependent Variables: Revenue Costs Profit Value Added
Model: (1) (2) (3) (4)

Variables
GDD 5.103 1.213 -8.322 2.597

(11.84) (7.809) (13.16) (12.68)
GDD (F) 37.39 30.79∗∗ 3.257 16.35

(34.66) (14.48) (43.14) (43.10)
HDD -158.3 -191.9 184.6 53.36

(332.2) (156.9) (277.2) (292.0)
HDD (F) 1,192.2∗∗∗ -56.71 2,066.7∗∗∗ 2,429.3∗∗∗

(402.7) (178.5) (708.1) (809.1)

Mean 155,386.2 123,249.1 86,695.2 58,356.8
Unique Farms 2,603 2,603 2,603 2,603

Fixed-effects
Farm Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 18,917 18,917 18,917 18,917
R2 0.88715 0.93666 0.84140 0.80546

Notes. Two-way department-by-year standard-errors in parentheses. Stars indicate
estimate is significantly different from zero: *p < .10, **p < .05, ***p < .01. Realized
and forecasted rainfall in levels and squares are included as controls, as well as quadratic
region-specific time trends. Sales correspond to total sales at the farm levels, and costs
to total costs.
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Table A9: Price and Quantity Reactions to Forecasts

Dependent Variables: Price Output Storage Price Output Storage
Model: (1) (2) (3) (4) (5) (6)

Variables
GDD -0.0275 0.0000 -0.0018∗∗ -0.0248 0.0000 -0.0017∗∗

(0.0291) (0.0001) (0.0007) (0.0285) (0.0001) (0.0007)
GDD (F) 0.0771 0.0002 -0.0002

(0.0595) (0.0004) (0.0015)
GDD (F2) 0.1225∗∗ 0.0005 0.0004

(0.0527) (0.0005) (0.0016)
HDD -0.2299 -0.0045∗ -0.0021 -0.1357 -0.0049∗∗ -0.0012

(0.3170) (0.0022) (0.0153) (0.3607) (0.0022) (0.0141)
HDD (F) 0.2609 0.0089∗ 0.0248

(1.561) (0.0046) (0.0213)
HDD (F2) -1.742 0.0024 -0.0027

(1.146) (0.0056) (0.0270)

Mean 205.2 7,793.0 88.65 205.2 7,793.0 88.65
Unique Farms 2,603 2,603 2,183 2,603 2,603 2,183

Fixed-effects
Farm Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 18,917 18,917 9,602 18,917 18,917 9,602
R2 0.73239 0.94659 0.66516 0.73276 0.94670 0.66557

Notes: Two-way department-by-year standard-errors in parentheses. Stars indicate estimate is signifi-
cantly different from zero: *p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels
and squares are included as controls, as well as quadratic region-specific time trends. The price variable
corresponds to a price index across all crops sold by the farm, the output is a non-weighted sum of the
output quantities, and the storage is a non-weighted sum of the variation in storage across all crops also
in quantity. Both output and storage are expressed in logs.
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Table A10: Prices and Quantities for Outputs and Inputs (1 month lead)

Dependent Variables: Output Price Output (log) Storage (log) Input Price Irrigation Fertilizer Phytosanitary
Model: (1) (2) (3) (4) (5) (6) (7)

Variables
GDD -0.0275 1.58× 10−5 -0.0018∗∗ -0.1264 0.4377 -2.648 -1.297

(0.0291) (0.0001) (0.0007) (0.2577) (0.2677) (2.659) (1.256)
GDD (F) 0.0771 0.0002 -0.0002 0.5127 -0.4981 7.640 -0.6958

(0.0595) (0.0004) (0.0015) (1.061) (0.6717) (8.721) (2.423)
HDD -0.2299 -0.0045∗ -0.0021 -15.64 7.506 -86.74 -16.09

(0.3170) (0.0022) (0.0153) (10.31) (6.729) (63.42) (36.68)
HDD (F) 0.2609 0.0089∗ 0.0248 -0.2832 -23.88 -9.140 54.64

(1.561) (0.0046) (0.0213) (11.63) (17.36) (77.49) (71.49)

Mean 205.2 7,793.0 88.65 1,899.6 683.1 31,777.2 23,072.2
Unique Farms 2,603 2,603 2,183 2,603 2,603 2,603

Fixed-effects
Farm Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes Yes
Company Yes
Product Yes

Fit statistics
Observations 18,917 18,917 9,602 33,174 18,917 18,917 18,917
R2 0.73239 0.94659 0.66516 0.35144 0.86328 0.89547 0.92414

Notes: Two-way department-by-year standard-errors in parentheses. Stars indicate estimate is significantly different
from zero: *p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels and squares, as well as quadratic
region-specific time trends, are included as controls. The input price variable corresponds to prices observed at the store
level in an agricultural input price survey run across France in order to build input price indices.
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Table A11: Cost and Revenue Reactions to HDD—Comparison

Dependent Variables: Revenue Costs
Model: (1) (2) (3) (4)

Variables
GDD 5.103 9.882 1.213 2.483

(11.84) (11.67) (7.809) (8.442)
GDD (F) 37.39 30.79∗∗

(34.66) (14.48)
HDD -158.3 -100.1 -191.9 -158.2

(332.2) (323.9) (156.9) (191.0)
HDD (F) 1,192.2∗∗∗ -56.71

(402.7) (178.5)

Mean 155,386.2 155,386.2 123,249.1 123,249.1
Unique Farms 2,603 2,603 2,603 2,603

Fixed-effects
Farm Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 18,917 18,917 18,917 18,917
R2 0.88715 0.88700 0.93666 0.93662

Notes. Two-way department-by-year standard-errors in parentheses. Stars indicate
estimate is significantly different from zero: *p < .10, **p < .05, ***p < .01.
Realized and forecasted rainfall in levels and squares are included as controls, as
well as quadratic region-specific time trends. Sales correspond to total sales at the
farm levels, and costs to total costs.
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Table A12: Profit Reaction to Forecasts

Dependent Variables: Value Added Profit
Model: (1) (2) (3) (4)

Variables
GDD 2.597 7.932 -8.322 -3.996

(12.68) (14.48) (13.16) (14.22)
GDD (F) 16.35 3.257

(43.10) (43.14)
HDD 53.36 117.8 184.6 232.4

(292.0) (272.9) (277.2) (253.2)
HDD (F) 2,429.3∗∗∗ 2,066.7∗∗∗

(809.1) (708.1)

Mean 58,356.8 58,356.8 86,695.2 86,695.2
Unique Farms 2,603 2,603 2,603 2,603

Fixed-effects
Farm Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 18,917 18,917 18,917 18,917
R2 0.80546 0.80435 0.84140 0.84076

Notes. Two-way department-by-year standard-errors in parentheses. Stars indi-
cate estimate is significantly different from zero: *p < .10, **p < .05, ***p < .01.
Realized and forecasted rainfall in levels and squares are included as controls, as
well as quadratic region-specific time trends.
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Table A13: Input Reactions to Forecasts (1 month lead)

Dependent Variables: Land Labor Fertilizer Phytosanitary Seeds Irrigation
Model: (1) (2) (3) (4) (5) (6)

Variables
GDD -0.1459 0.0660 -2.648 -1.297 0.3886 0.4377

(0.2313) (0.1441) (2.659) (1.256) (1.177) (0.2677)
GDD (F) 0.0960 0.3955∗∗ 7.640 -0.6958 -0.2525 -0.4981

(0.7421) (0.1786) (8.721) (2.423) (2.267) (0.6717)
HDD 5.878 -0.5341 -86.74 -16.09 -17.99 7.506

(6.055) (4.215) (63.42) (36.68) (25.75) (6.729)
HDD (F) 11.10 -0.5139 -9.140 54.64 -32.99 -23.88

(18.97) (5.123) (77.49) (71.49) (52.62) (17.36)

Mean 14,504.1 2,684.0 31,777.2 23,072.2 12,231.1 683.1
Unique Farms 2,603 2,603 2,603 2,603 2,603 2,603

Fixed-effects
Farm Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 18,917 18,917 18,917 18,917 18,917 18,917
R2 0.97649 0.86153 0.89547 0.92414 0.88021 0.86328

Notes: Two-way department-by-year standard-errors in parentheses. Stars indicate estimate is significantly
different from zero: *p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels and squares are
included as controls, as well as quadratic region-specific time trends.
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Table A14: Input Reactions to Forecasts (2 months lead)

Dependent Variables: Land Labor Fertilizer Phytosanitary Seeds Irrigation
Model: (1) (2) (3) (4) (5) (6)

Variables
GDD -0.0902 0.0964 -2.213 -1.473 0.3063 0.3209

(0.2358) (0.1368) (2.638) (1.268) (1.151) (0.2655)
GDD (F2) -0.4784 0.6862∗∗ 7.582 2.205 -0.7147 0.1433

(1.269) (0.3289) (9.079) (3.116) (2.809) (0.6912)
HDD 4.587 -1.461 -91.57 -7.057 -14.96 10.05

(4.927) (3.618) (73.23) (42.08) (25.35) (6.736)
HDD (F2) 40.92 4.447 -65.32 -10.02 -118.5∗∗ -33.40

(39.92) (10.19) (119.0) (84.24) (57.32) (23.67)

Mean 14,504.1 2,684.0 31,777.2 23,072.2 12,231.1 683.1
Unique Farms 2,603 2,603 2,603 2,603 2,603 2,603

Fixed-effects
Farm Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 18,917 18,917 18,917 18,917 18,917 18,917
R2 0.97649 0.86160 0.89546 0.92412 0.88027 0.86332

Notes: Two-way department-by-year standard-errors in parentheses. Stars indicate estimate is significantly
different from zero: *p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels and squares are
included as controls, as well as quadratic region-specific time trends.
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Table A15: Input Prices Reactions to Forecasts (1 month lead)

Dependent Variables: All Store Prices Fertilizers Pesticides Seeds Land
Model: (1) (2) (3) (4) (5)

Variables
GDD -0.1264 -0.1150 -0.3309 -0.0022 -0.9180∗∗

(0.2577) (0.1148) (0.3590) (0.7071) (0.3841)
GDD (F) -0.5127 0.2934∗ -1.019 -0.5383 0.3801

(1.061) (0.1668) (1.328) (2.557) (0.7375)
HDD -15.64 -0.9002 -17.44 -15.24 5.278

(10.31) (1.969) (14.07) (26.53) (7.407)
HDD (F) -0.2832 -2.031 3.342 3.638 -1.186

(11.63) (3.208) (21.13) (20.88) (12.65)

Mean 1,899.6 517.0 3,151.3 310.8 4,848.3
Unique Farms 298 203 283 195 2,428

Fixed-effects
Company Yes Yes Yes Yes Year
Product Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes
Farm Yes

Fit statistics
Observations 33,174 9,258 17,883 6,033 17,003
R2 0.35144 0.61626 0.21604 0.37588 0.96108

Notes: Two-way department-by-year standard-errors in parentheses. Stars indicate estimate is signif-
icantly different from zero: *p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels
and squares are included as controls, as well as quadratic region-specific time trends.
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Table A16: Input Prices Reactions to Forecasts (2 months lead)

Dependent Variables: All Store Prices Fertilizers Pesticides Seeds Land
Model: (1) (2) (3) (4) (5)

Variables
GDD -0.1425 -0.0728 -0.3654 -0.0289 -0.8877∗∗

(0.2250) (0.1214) (0.3820) (0.6006) (0.3727)
GDD (F2) 0.5476 0.5868∗∗ 1.177 -0.5384 0.7041

(0.5782) (0.2197) (1.003) (2.462) (0.6087)
HDD -13.84 -1.015 -15.04 -14.44 6.401

(8.467) (2.204) (14.49) (28.37) (7.860)
HDD (F2) -13.95 -3.455 -18.26 -32.05 -6.150

(19.30) (4.282) (34.75) (32.29) (14.42)

Mean 1,899.6 517.0 3,151.3 310.8 4,848.3
Unique Farms 298 203 283 195 2,428

Fixed-effects
Company Yes Yes Yes Yes
Product Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes
Farm Yes

Fit statistics
Observations 33,174 9,258 17,883 6,033 17,003
R2 0.35146 0.61629 0.21611 0.37602 0.96115

Notes: Two-way department-by-year standard-errors in parentheses. Stars indicate estimate is signif-
icantly different from zero: *p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels
and squares are included as controls, as well as quadratic region-specific time trends.
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Table A17: Output Quantities Reactions to Forecasts (1 months lead)

Dependent Variables: Wheat Corn Sunflower Colza Beets
Model: (1) (2) (3) (4) (5)

Variables
GDD -0.5348 0.3959 0.1296 -0.4127∗∗ 1.844

(0.6444) (0.3648) (0.1032) (0.1891) (2.867)
GDD (F) 0.4925 0.9547 -0.1866 0.5136 -6.308

(1.095) (1.260) (0.2368) (0.5582) (4.832)
HDD 1.234 -27.73∗ -2.146 9.309∗∗ -24.04

(8.995) (14.56) (2.607) (3.566) (58.42)
HDD (F) 61.79∗∗∗ -6.591 -1.009 13.34 66.38∗∗

(19.64) (9.322) (5.208) (12.42) (29.84)

Mean 3,840.1 3,464.3 509.3 914.9 9,127.8
Unique Farms 2,448 1,607 1,357 1,940 346

Fixed-effects
Farm Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes

Fit statistics
Observations 17,336 10,346 7,203 12,394 2,267
R2 0.90300 0.93547 0.78666 0.80582 0.92908

Notes: Two-way department-by-year standard-errors in parentheses. Stars indicate estimate
is significantly different from zero: *p < .10, **p < .05, ***p < .01. Realized and forecasted
rainfall in levels and squares are included as controls, as well as quadratic region-specific
time trends.
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Table A18: Farm-Level Reactions: Decomposed Weather

Dependent Variables: Revenue Costs Revenue Costs
Model: (1) (2) (3) (4)

Variables
GDD (m) 10.21 14.67 9.516 11.24

(11.45) (11.19) (13.50) (10.83)
GDD (nm) 6.281 3.595 8.043 1.765

(11.47) (9.024) (10.82) (8.555)
GDD (m) (F) 21.81 24.53

(34.12) (16.99)
GDD (m) (F2) 76.42∗∗ 27.23

(34.60) (17.44)
GDD (nm) (F) 1.870 31.30∗

(49.83) (15.75)
GDD (nm) (F2) 44.16 27.53∗

(39.11) (15.63)
HDD (m) -281.3 -225.8 -308.2 -198.1

(325.7) (144.8) (278.8) (131.9)
HDD (nm) -483.9 168.1 -218.1 239.3

(1,735.4) (808.5) (1,356.9) (743.9)
HDD (m) (F) -1,687.3∗∗ -78.96

(735.4) (934.0)
HDD (nm) (F) 1,713.4∗∗∗ -79.26

(438.0) (363.2)
HDD (m) (F2) 753.2 -72.96

(758.5) (384.6)
HDD (nm) (F2) -641.1 -637.2

(786.4) (423.6)

Mean 155,396.1 123,264.8 155,396.1 123,264.8
Unique Farms 2,523 2,523 2,523 2,523

Fixed-effects
Farm Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 17,581 17,581 17,581 17,581
R2 0.88584 0.93706 0.88592 0.93706

Notes. Two-way department-by-year standard-errors in parentheses. Stars indicate
estimate is significantly different from zero: *p < .10, **p < .05, ***p < .01.
Realized and forecasted rainfall in levels and squares are included as controls, as well
as quadratic region-specific time trends. Here (m) indicates marginal weather, (nm)
stands for non-marginal, and the F indicates one month ahead seasonal forecasts.
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Table A19: Cost and Revenue Reactions to Alternative Weather

Dependent Variables: Revenue Costs Revenue Costs
Model: (1) (2) (3) (4)

Variables
GDD 2.727 -1.260 9.877 -0.2960

(10.58) (8.001) (9.127) (8.967)
GDD (F) 21.26 35.91∗∗

(37.08) (14.78)
GDD (F2) 54.92 37.30∗∗

(37.20) (17.39)
HDD -53.39 -106.3 -70.30 -85.43

(178.4) (90.81) (150.2) (108.3)
HDD (F) 628.3∗∗ -13.57

(261.4) (127.9)
HDD (F2) 30.40 46.07

(154.3) (92.70)
FDD 22.71 -2.684 36.93 -3.235

(30.00) (12.43) (29.83) (12.01)
FDD (F) -23.42 -96.00

(107.2) (84.34)
FDD (F2) -7.956 -41.77

(139.4) (78.21)

Mean 155,637.5 123,304.2 155,637.5 123,304.2
Unique Farms 2,625 2,625 2,625 2,625

Fixed-effects
Farm Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 18,428 18,428 18,428 18,428
R2 0.88877 0.93766 0.88866 0.93766

Notes. Two-way department-by-year standard-errors in parentheses. Stars indi-
cate estimate is significantly different from zero: *p < .10, **p < .05, ***p < .01.
Realized and forecasted rainfall in levels and squares are included as controls, as
well as quadratic region-specific time trends.
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Table A20: Weather Decomposition

Mean
GDD 2066.18

GDD marginal 1803.06
GDD non-marginal 263.11

GDD - ratio 0.13
HDD 2.03

HDD marginal 0.25
HDD non-marginal 1.78

HDD - ratio 0.85

Notes. We specify the ratio of
marginal to total GDD and HDD real-
ization along with their respective av-
erage over all French departments for
1994-2018.
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Table A22: Dynamic Effects on Profit

Dependent Variables: Profit (lag 2) Profit (lag) Profit Profit (lead) Profit (lead 2) Profit (lead 3)
Model: (1) (2) (3) (4) (5) (6)

Variables
GDD -37.50 3.040 0.8610 1.672 6.464 -12.11

(26.39) (18.60) (15.60) (21.22) (28.85) (15.23)
GDD (F) -28.51 19.16 22.59 35.83 -23.00 74.23

(44.17) (41.41) (51.62) (31.77) (65.72) (68.71)
GDD (lag) -20.16 23.08 -8.886 -11.17 24.54 -19.38

(13.49) (20.02) (10.79) (12.80) (15.51) (23.39)
GDD (lag 2) 33.05 -1.883 -19.26∗ 17.50 7.012 -4.012

(20.04) (10.61) (10.90) (11.41) (22.95) (23.43)
HDD 85.82 -645.9 110.3 343.7 294.6 -271.3

(351.0) (399.8) (338.7) (271.8) (539.8) (536.6)
HDD (F) 663.2 265.1 1,908.2∗∗ -1,827.7∗∗∗ -1,435.3∗ -323.6

(450.4) (649.2) (847.0) (645.3) (701.9) (699.6)
HDD (lag) -628.0 -383.3 523.3∗∗ 747.2∗∗ -301.0 1,425.3∗

(388.2) (500.4) (233.5) (312.6) (533.0) (702.8)
HDD (lag 2) -810.0 545.8∗∗ 709.9∗∗ -239.8 1,350.0∗ 196.2

(528.3) (224.8) (254.8) (407.8) (773.5) (732.5)
Mean 89,683.8 87,948.4 86,695.2 86,835.8 86,755.7 86,847.5
Unique Farms 1,904 1,904 1,904 1,689 1,485 1,308

Fixed-effects
Farm Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 14,097 14,097 14,097 12,193 10,504 9,019
R2 0.83711 0.84295 0.84166 0.83855 0.83286 0.82522

Clustered (Department & Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes. Two-way department-by-year standard-errors in parentheses. Stars indicate estimate is significantly different from zero:
*p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels and squares for period t are included as controls, as
well as lag realized rainfall for periods t−1 and t−2, in both levels and squares, and finally quadratic region-specific time trends.
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Table A23: Dynamic Effects on Costs

Dependent Variables: Costs (lag 2) Costs (lag) Costs Costs (lead) Costs (lead 2) Costs (lead 3)
Model: (1) (2) (3) (4) (5) (6)

Variables
GDD -3.575 -6.160 -1.821 9.009 -1.588 -0.6275

(2.936) (7.389) (6.765) (7.430) (6.439) (15.26)
GDD (F) 4.233 10.76 25.16 1.032 19.52 0.1542

(12.40) (15.83) (16.93) (15.47) (13.90) (13.35)
GDD (lag) -2.732 -1.792 8.348∗∗ -1.979 -7.641 7.856

(5.282) (5.148) (3.891) (3.211) (5.514) (8.929)
GDD (lag 2) -7.519 1.596 -1.100 -6.294∗ 3.882 -1.251

(5.382) (3.260) (3.044) (3.288) (7.431) (10.67)
HDD 156.4 85.26 -283.6 -213.1 -20.03 164.1

(103.4) (93.48) (175.5) (223.0) (178.1) (227.9)
HDD (F) -173.2 -188.6 -196.9 1,028.5∗∗ 325.9 118.3

(303.7) (215.1) (115.6) (429.7) (409.7) (222.7)
(126.7) (115.7) (117.7) (144.6) (301.2) (185.8)

HDD (lag) 1.882 -243.4 -88.25 124.1 218.0 -152.4
(113.6) (157.4) (174.8) (143.9) (221.5) (314.4)

HDD (lag 2) -176.8 -61.66 56.04 171.7 -117.3 212.2

Unique Farms 1,904 1,904 1,904 1,689 1,485 1,308

Fixed-effects
Farm Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 14,097 14,097 14,097 12,193 10,504 9,019
R2 0.93847 0.94030 0.94043 0.94116 0.94228 0.94544

Clustered (Department & Year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes. Two-way department-by-year standard-errors in parentheses. Stars indicate estimate is significantly different from
zero: *p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels and squares for period t are included as
controls, as well as lag realized rainfall for periods t − 1 and t − 2, in both levels and squares, and finally quadratic region-
specific time trends.
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Table A24: Revenues and Costs with Limited Crop Switching (1 month lead)

Dependent Variables: Value Added Profit
Model: (1) (2)

Variables
GDD -188.5∗∗ -196.0∗∗

(79.67) (78.32)
GDD (F) 44.13 -60.90

(148.3) (158.8)
HDD -429.6 -107.1

(2,058.2) (2,139.2)
HDD (F) 274.3 -4,159.3

(4,570.9) (4,594.3)

Mean 42,165.0 62,266.7
Unique Farms 182 182

Fixed-effects
Farm Yes Yes
Year Yes Yes

Fit statistics
Observations 365 365
R2 0.91184 0.93709

Notes: Two-way department-by-year standard-errors in parentheses. Stars indicate estimate is significantly different from zero:
*p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels and squares are included as controls, as well as
quadratic region-specific time trends.
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Table A25: Profits Under Adversarial Weather

Dependent Variables: Value Added Profit Value Added Profit
Model: (1) (2) (3) (4)

Variables
GDD -36.15 -31.59 2.508 -0.7419

(24.89) (31.49) (36.49) (45.00)
GDD (F) 86.76 18.16

(77.09) (93.93)
GDD (F2) 113.1∗∗ 50.48

(45.12) (68.10)
HDD 178.3 -21.13 -394.2 -339.3

(304.5) (198.5) (332.5) (265.4)
HDD (F) 1,180.3 684.7

(859.4) (689.5)
HDD (F2) 1,236.0 561.7

(1,295.3) (1,118.2)

Mean 54,694.6 76,473.1 54,694.6 76,473.1
Unique Farms 852 852 852 852

Fixed-effects
Farm Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 3,145 3,145 3,145 3,145
R2 0.84552 0.86974 0.84566 0.86966

Notes. Two-way department-by-year standard-errors in parentheses. Stars indicate
estimate is significantly different from zero: *p < .10, **p < .05, ***p < .01. Realized
and forecasted rainfall in levels and squares are included as controls, as well as quadratic
region-specific time trends.
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Table A26: Costs Under Adversarial Weather

Dependent Variables: Sales Costs Sales Costs
Model: (1) (2) (3) (4)

Variables
GDD -78.75 -21.00 16.36 -17.67∗

(46.48) (24.87) (28.03) (9.900)
GDD (F) 152.9∗ 31.72

(74.93) (50.64)
GDD (F2) -96.88∗ -54.19

(51.33) (32.76)
HDD 747.6 169.2 -1,101.9 111.3

(471.1) (216.8) (683.3) (308.1)
HDD (F) 552.0 540.7

(672.3) (582.7)
HDD (F2) -715.7 -1,333.4

(1,472.3) (845.3)

Mean 156,149.9 129,786.1 156,149.9 129,786.1
Unique Farms 852 852 852 852

Fixed-effects
Farm Yes Yes
Year Yes Yes

Fit statistics
Observations 3,145 3,145 3,145 3,145
R2 0.91346 0.95731 0.10273 0.09822

Notes. Two-way department-by-year standard-errors in parentheses. Stars indi-
cate estimate is significantly different from zero: *p < .10, **p < .05, ***p < .01.
Realized and forecasted rainfall in levels and squares are included as controls, as
well as quadratic region-specific time trends.
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Table A27: Input Responses Under Adversarial Weather

Dependent Variables: Land Labor Fertilizer Phytosanitary Seeds Irrigation
Model: (1) (2) (3) (4) (5) (6)

Variables
GDD 0.3251 -0.1560 -1.525 -8.631 2.849 1.328

(1.334) (0.4198) (6.469) (5.391) (2.571) (1.192)
GDD (F) -5.100 -0.5215 -37.35∗ -19.31∗∗ 2.276 0.6668

(3.956) (0.6705) (19.79) (8.634) (8.349) (2.157)
HDD -20.58 10.34∗ -156.9∗ 3.362 -9.632 30.16

(18.61) (5.927) (77.06) (61.49) (55.10) (19.13)
HDD (F) 25.11 9.432 77.74 113.9 -103.5 -39.76

(41.48) (12.24) (70.96) (97.13) (68.34) (31.57)

Mean 15,184.4 2,480.5 29,828.8 22,023.7 12,830.9 992.7
Unique Farms 852 852 852 852 852 852

Fixed-effects
Farm Yes Yes Yes Yes Yes Yes
Rear Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 3,145 3,145 3,145 3,145 3,145 3,145
R2 0.98385 0.89681 0.91503 0.93277 0.92247 0.86269

Notes. One-way department-level standard-errors in parentheses. Stars indicate estimate is significantly
different from zero: *p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels and squares are
included as controls, as well as quadratic department-specific time trends.
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Table A28: Inputs Under Adversarial Weather (2 months forecasts)

Dependent Variables: Land Labor Fertilizer Phytosanitary Seeds Irrigation
Model: (1) (2) (3) (4) (5) (6)

Variables
GDD -0.2016 -0.2144 -8.558 -13.22∗∗∗ 2.279 1.310

(1.208) (0.4333) (6.812) (4.234) (2.609) (1.034)
GDD (F2) -10.53∗∗ -1.077 -58.36∗∗∗ -19.83∗∗∗ -2.702 -2.929

(4.429) (0.7503) (15.10) (4.798) (8.307) (2.178)
HDD 6.240 10.11∗ 18.60 79.12 -30.99 16.31

(15.33) (5.501) (90.35) (56.54) (39.39) (14.03)
HDD (F2) 62.54 35.62∗∗ -80.60 154.8 -146.3 -19.99

(75.74) (15.90) (205.9) (195.1) (104.7) (60.02)

Mean 15,184.4 2,480.5 29,828.8 22,023.7 12,830.9 992.7
Unique Farms 852 852 852 852 852 852

Fixed-effects
Farm Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 3,145 3,145 3,145 3,145 3,145 3,145
R2 0.98393 0.89719 0.91590 0.93296 0.92229 0.86174

Notes. Two-way department-by-year standard-errors in parentheses. Stars indicate estimate is significantly
different from zero: *p < .10, **p < .05, ***p < .01. Realized and forecasted rainfall in levels and squares are
included as controls, as well as quadratic region-specific time trends.
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B Data Details

B.1 Definition of Variables

Definitions for the main variables used:

• Crop Prices. They are measured by dividing the total value of sales of that given crop, by the total
quantity sold.

• Output Price Index. For ljct the land area allocated to crop c by farm j in period t, Cjt the crop
mix of farm j in period t, and pjct the output price of that same crop for that same farm, we build:

pjt =
∑
c∈Cjt

ljct∑
c∈Cjt

ljct
pjct (5)

We consider the following crops for that purpose: wheat, durum wheat, oats, corn, corn (seeds),
sorghum, spring barley, winter barley, rye, triticale, summer cereals, other cereals, sunflower, colza,
soy, dry peas, feverole beans, protein peas.

• Output/Storage Quantity Index. This index is used as an aggregate measure of farm output/s-
torage, and is intended to represent the average level of output/storage across the farm rather than a
total quantity. It is built for the same set of crops as the one used for the output price index. We use
the analogous formula: with qjct the output/storage quantity for crop c in farm j in year t:

qjt =
∑
c∈Cjt

ljct∑
c∈Cjt

ljct
qjct (6)

• Storage. We define the variation in storage at period t - the net storage flow - as the difference
between the quantity produced and the quantity sold for a specific crop.

• Land prices. are defined as the total value of land divided by the total quantity of land.

• Fertilizer, pesticide and seed. They are observed at the farm-level, correspond to deflated bills, and
are defined as the difference between purchases plus beginning-of-period stocks, minus end-of-period
stocks.

• Labor. Defined as the total number of paid hours worked over the season.

• Intermediary Inputs. Defined as a deflated bill. The sum of expenses for: fertilizer, seeds, pesticides,
animal food, veterinary products, products for animal reproduction, packaging, fuel, maintenance
products, supplies, food for workers, raw materials, purchases of services for cultivation, breeding
or others, water, gas, electricity, irrigation water, lease installments, material rental, animal rental,
maintenance for buildings, lands and material, studies and research, veterinary services, communication
and commercials, transportation costs, travel costs, postal services, banking services, other services and
costs.

• Total Costs. Defined as a deflated bill. Corresponds to the sum of intermediary inputs, social
contributions for workers, personnel expenses, taxes, insurance.

• Value Added. Defined as the difference between total production value minus animal purchases,
minus intermediary inputs. Total production itself corresponds to total production sold, self-consumed
production, immobilised production, stored production, gains from animal boarding, land rentals, other
rentals, agricultural tourism.
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• Profit Defined as the gross operating income of the farm. Our profit variable encompasses value added,
and among else also includes subsidies, expenses for insurance, and insurance indemnities.

All variables measured in euros are converted into 2020 euros using the INSEE consumer price index.

B.2 Weather Data
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Figure A19: Unconditional and Conditional Average Temperature Realizations
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C Validation of Results

Table A29: Corn-Specific Outcomes

Dependent Variables: Output Price Sales Sales Quantity
Model: (1) (2) (3) (4)

Variables
GDD 0.4668 -0.0041 8.820 0.6642

(0.3725) (0.0094) (8.334) (0.5162)
HDD -30.72∗ 0.7290∗∗ -133.8 -13.71

(15.22) (0.2970) (186.0) (11.39)

Mean 3,464.3 150.0 53,507.8 3,437.5
Unique Farms 1,607 1,581 1,607 1,607

Fixed-effects
Farm Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 10,346 9,958 10,346 10,346
R2 0.93538 0.72917 0.87702 0.87607

Notes. Two-way department-by-year standard-errors in parentheses. Stars indicate
estimate is significantly different from zero: *p < .10, **p < .05, ***p < .01. Real-
ized and forecasted rainfall in levels and squares are included as controls, as well as
quadratic region-specific time trends.
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D Robustness

D.1 Heterogeneous Response to Forecasts

We show that there is little heterogeneity in farms’ response to forecasted HDDs, looking at two potential
important margins. First, we show that farms of different size do not seem to respond in very different ways
to forecasts, then that farmers from different generations seem to have also a similar response to forecasts.

In the following graph we show the coefficient associated to the one month ahead HDD forecast when
regressing farm log profit on realized and forecasted weather, and including year and farm fixed effects. We
measure farm size using their gross operating income deflated to 2020 euros. While the graph shows some
variation across quantiles and showcases a form of U-shape, there are no large differences in coefficient values
across these quantiles. Farms are able to save the same percentage of their profit by using forecasted HDDs.
This implies however that larger farmers are able to save a larger value whe using forecasts, hinting that
heat shocks act as a negative multiplier to production rather than an additive shock.
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Figure A20: Varying Response to Fixed Lead of HDD

Next we rank farms by the date of birth of their manager. This analysis relies on the fact that forecasts
are a relatively new technology, dating to the 1990s, and might be more easily adopted by farmers who went
through their education when these were already available.

84



0.00

0.05

0.10

0.15

1 3 5 7 9
Birth Quantile

C
oe

ffi
ci

en
t

Figure A21: Profit Response to Forecasts across Manager’s Age

We see a small increase in the reaction to forecasts for the youngest group of farmers, but again the
difference is not stark. This is indicative that the timing of the farmers’ education is not a strong predictor
for their adoption of forecasts.

D.2 Including Lags

As a robustness check, we run the same regression as before but including lagged values of weather realization
(rainfall in levels and squared, GDD and HDD). Again, the regressions also include farm and year fixed effects,
and we cluster standard errors at the department level. Lagged realizations might matter, first because of
auto-correlation in weather, for example due to the role of large weather patterns such as the North Atlantic
Oscillation. Second, lags might also play a role in the setting of farmers’ beliefs about the upcoming weather,
as modelled and discussed by Burke and Emerick (2016). In this case, including both lags and forecasts might
better account for farmers’ beliefs.

As we see however, lagged realizations of growing and heating degree days play a non-significant role
in driving farm profit once we control for forecasts. Forecasts of heating degree days, on the other hand, still
have a large positive and significant impact on farm profit.
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Table A31: Farm-Level Profit - Lead 1 with Lags

Dependent Variables: Value Added Profit Value Added Profit
Model: (1) (2) (3) (4)

Variables
GDD 7.832 -2.904 16.74 3.510

(14.84) (14.43) (16.09) (15.45)
GDD (lag) -3.248 -7.945 -5.777 -9.417

(9.944) (9.856) (9.745) (9.903)
GDD (F) 24.77 9.606

(47.09) (45.98)
GDD (F2) 74.09 48.48

(48.83) (49.66)
HDD -22.75 133.9 -111.1 61.37

(333.0) (330.6) (290.2) (280.3)
HDD (lag) 352.6∗ 429.4∗ 390.0∗ 448.4∗

(200.6) (218.6) (220.8) (229.6)
HDD (F) 2,202.0∗∗ 1,781.0∗∗

(848.8) (761.8)
HDD (F2) 1,058.3 1,097.9

(720.1) (644.3)

Mean 58,356.8 86,695.2 58,356.8 86,695.2
Unique Farms 2,217 2,217 2,217 2,217

Fixed-effects
Farm Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 16,314 16,314 16,314 16,314
R2 0.80934 0.84251 0.80899 0.84235

Notes. Two-way department-by-year standard-errors in parentheses. Stars indicate es-
timate is significantly different from zero: *p < .10, **p < .05, ***p < .01. Realized
and forecasted rainfall in levels and squares are included as controls, as well as quadratic
region-specific time trends.

Compared to our main results in Table 5, we see a slight decrease in the coefficients associated to
forecasted HDDs: the coefficient for value added moves from 2,430 to 2,199, and the one for profit moves
from 2,005 to 1,712. As such, results are stable to the inclusion or exclusion of lags.

D.3 Alternative Weather Aggregation

We perform another robustness check, and recompute our growing and heating degree days. This time, we
use 28°C as a cutoff for the classification of hourly temperature realizations as GDD or HDD. The hours
spent below are now counted towards growing degree days, while those above count towards the heating
degree days. We also create a measure of freezing degree days, which counts the degree-hours spent below
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0°C in absolute value. This might be useful, first to identify whether we can observe interesting responses to
freeze, and see whether we also observe non-marginal profit responses to their forecast. Second, low growing
degree day values might correlate with abnormally low temperature, and without including freezing degree
days, might capture in part the impact of freeze on agriculture. Including them will then purge GDD from
its correlation with very cold events.

Table A32: Farm-Level Profit - Alternative Weather

Dependent Variables: Value Added Profit Value Added Profit
Model: (1) (2) (3) (4)

Variables
GDD 6.967 -4.105 16.23 2.994

(11.16) (11.30) (13.57) (13.14)
GDD (F) -12.41 -20.26

(44.68) (44.57)
GDD (F2) 54.21 33.22

(42.57) (42.86)
HDD 61.33 129.3 -1.853 70.28

(177.4) (170.9) (154.6) (143.3)
HDD (F) 942.8∗∗∗ 796.6∗∗∗

(295.8) (269.4)
HDD (F2) 151.5 125.0

(247.9) (238.2)
FDD 68.19∗ 64.41 81.91∗∗ 76.22∗

(39.12) (37.66) (39.03) (37.38)
FDD (F) 188.8 141.9

(158.4) (155.5)
FDD (F2) 139.2 175.6

(124.0) (133.9)

Mean 58,332.2 87,330.0 58,332.2 87,330.0
Unique Farms 2,625 2,625 2,625 2,625

Fixed-effects
Farm Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 18,428 18,428 18,428 18,428
R2 0.80601 0.84326 0.80505 0.84269

Notes. Two-way department-by-year standard-errors in parentheses. Stars indicate
estimate is significantly different from zero: *p < .10, **p < .05, ***p < .01. Realized
and forecasted rainfall in levels and squares are included as controls, as well as quadratic
region-specific time trends.

The results are similar to the ones from our main specification. Forecasted HDDs have a positive
impact of profit, albeit a smaller one than previously. A one unit increase in forecasted HDD corresponds
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here to a smaller increase in temperature over the growing season, and it should be expected that it implies
a smaller response. Forecasted freezing days also imply a positive profit response. As such, it seems that
farmers adapt both to extremely hot and cold events, in a way that leads to non-marginal changes in their
optimal profit.

In Table A19 we show the costs and revenue responses to these alternative weather calculations.

D.4 Removing Time Trends

Here we run the same regressions as in the main part of the paper, using our initial measures of weather,
but removing the quadratic department-specific time trends. Results are very close to those in Table 2.

Table A33: Farm-Level Profit - No Time Trend

Dependent Variables: Sales Costs Sales Costs
Model: (1) (2) (3) (4)

Variables
GDD 3.473 -1.273 8.786 0.8753

(10.69) (7.359) (10.81) (7.934)
GDD (F) 47.76 37.66∗∗

(34.42) (14.38)
GDD (F2) 68.20∗ 45.50∗∗

(37.10) (17.93)
HDD -211.9 -184.3 -263.1 -183.4

(303.3) (148.6) (309.8) (187.2)
HDD (F) 1,342.2∗∗∗ 39.32

(454.7) (270.2)
HDD (F2) 1,381.6∗ 156.4

(702.9) (437.3)

Mean 155,386.2 123,249.1 155,386.2 123,249.1
Unique Farms 2,603 2,603 2,603 2,603

Fixed-effects
Farm Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 18,917 18,917 18,917 18,917
R2 0.88667 0.93591 0.88671 0.93591

Notes. Two-way department-by-year standard-errors in parentheses. Stars indicate
estimate is significantly different from zero: *p < .10, **p < .05, ***p < .01.
Realized and forecasted rainfall in levels and squares are included as controls, as
well as quadratic region-specific time trends.
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D.5 Disaggregated Realized Weather

Below we run our main specification using village-level realized weather and department-level forecasted
weather, which is the least coarse geographic unit that can match the forecasts’ grid. We note there are
about 36,000 villages in France, and hence this disaggregation corresponds to a significant gain in precision.
This analysis is performed on a subset of our main sample from 2002 onwards, as we cannot locate farms at
a finer level than the department prior to 2002.

Table A34: Cost and Revenue Reactions to Disaggregated Realized Weather

Dependent Variables: Revenue Costs Revenue Costs
Model: (1) (2) (3) (4)

Variables
GDD 1.505 -2.433 1.505 -2.433

(16.72) (5.363) (16.72) (5.363)
GDD (F) 42.86 52.73∗∗ 42.86 52.73∗∗

(45.68) (22.50) (45.68) (22.50)
HDD 43.12 39.96 43.12 39.96

(328.3) (114.3) (328.3) (114.3)
HDD (F) 1,289.7∗∗∗ 52.97 1,289.7∗∗∗ 52.97

(256.1) (37.98) (256.1) (37.98)

Mean 164,532.2 131,969.1 164,532.2 131,969.1
Unique Farms 1,890 1,890 1,890 1,890

Fixed-effects
Farm Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 12,754 12,754 12,754 12,754
R2 0.88834 0.94130 0.88834 0.94130

Notes. Two-way department-by-year standard-errors in parentheses. Stars indicate
estimate is significantly different from zero: *p < .10, **p < .05, ***p < .01.
Realized and forecasted rainfall in levels and squares are included as controls, as
well as quadratic region-specific time trends. Realized weather is measure at the
village level, while forecasts remain measured at the department one.
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D.6 Decomposing along the Forecast Error Sign

Table A35: Cost and Revenue Responses - Heterogeneity along the sign of Fore-
casts Errors: Forecasts - Realization (1 month forecasts)

Dependent Variables: Sales Costs Profit Value Added
Model: (1) (2) (3) (4)

Variables
GDD 7.588 2.326 -3.975 6.732

(10.51) (7.555) (13.24) (12.82)
GDD (F) 37.05 28.63∗∗ 3.802 18.25

(33.90) (12.78) (45.14) (45.11)
HDD -84.49 -184.6 321.9 179.2

(392.1) (192.9) (291.1) (297.7)
Forecast Bin 1 -3,509.7∗∗ -1,805.6 -4,641.8∗∗ -4,290.6∗

(1,637.1) (1,158.6) (2,093.7) (2,208.9)
Forecast Bin 2 -3,377.8∗ -1,169.5 -3,734.6∗∗ -3,962.1∗∗

(1,894.8) (751.5) (1,672.6) (1,721.9)
Forecast Bin 4 895.0 -897.5 612.8 340.2

(2,731.0) (863.7) (2,569.2) (2,601.4)
Forecast Bin 5 674.7 -1,327.2 999.5 1,754.9

(4,605.3) (1,353.1) (2,958.8) (3,183.8)

Mean 155,386.2 123,249.1 86,695.2 58,356.8
Unique Farms 2,603 2,603 2,603 2,603

Fixed-effects
Farm Yes Yes Yes Yes
Year Yes Yes Yes Yes

Fit statistics
Observations 18,917 18,917 18,917 18,917
R2 0.88717 0.93668 0.84118 0.80498

Notes. Two-way department-by-year standard-errors in parentheses. Stars indicate
estimate is significantly different from zero: *p < .10, **p < .05, ***p < .01. Realized
and forecasted rainfall in levels and squares are included as controls, as well as quadratic
region-specific time trends.
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